Великая Теорема Ферма Сингх Саймон

«Доказана ли Великая теорема Ферма?»

Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.

Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».

8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».

Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными. Такая программа была известна под названием философии параллелизма. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма. Напомним, что, по утверждению Ферма, уравнение

при n б?льших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n . Поверхности, связанные с уравнениями Ферма при различных значениях n , отличаются друг от друга, но обладают одним общим свойством - у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.

Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению x n + y n = z n (для поверхности слева n =3, для поверхности справа n =5). Переменные x и y здесь считаются комплексными

Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым - от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.

Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма, связывая ее с фундаментальной гипотезой в другой области математики. У Мияоки это была алгебраическая геометрия, для Уайлса путь к доказательству лежал через эллиптические кривые и модулярные формы. К великому огорчению Уайлса, он все еще бился над доказательством гипотезы Таниямы-Шимуры, когда Мияока заявил о том, что располагает полным доказательством собственной гипотезы и, следовательно, Великой теоремы Ферма.

Через две недели после своего выступления в Бонне Мияока опубликовал пять страниц вычислений, составлявших суть его доказательства, и началась тщательнейшая проверка. Специалисты по теории чисел и алгебраической геометрии во всех странах мира изучали, строка за строкой, опубликованные вычисления. Через несколько дней математики обнаружили в доказательстве одно противоречие, которое не могло не вызывать беспокойства. Одна из частей работы Мияоки приводила к утверждению из теории чисел, из которого, при переводе на язык алгебраической геометрии, получалось утверждение, противоречившее результату, полученному несколькими годами раньше. И хотя это не обязательно обесценивало все доказательство Мияоки, обнаруженное противоречие не вписывалось в философию параллелизма между теорией чисел и геометрией.

Еще через две недели Герд Фалтингс, проложивший путь Мияоке, объявил о том, что обнаружил точную причину кажущегося нарушения параллелизма - пробел в рассуждениях. Японский математик был геометром и при переводе своих идей на менее знакомую территорию теории чисел не был абсолютно строг. Армия специалистов по теории чисел предприняла отчаянные усилия залатать прореху в доказательстве Мияоки, но тщетно. Через два месяца после того, как Мияока заявил о том, что располагает полным доказательством Великой теоремы Ферма, математическое сообщество пришло к единодушному заключению: доказательство Мияоки обречено на провал.

Как и в случае прежних несостоявшихся доказательств, Мияоке удалось получить немало интересных результатов. Отдельные фрагменты его доказательства заслуживали внимания как весьма остроумные приложения геометрии к теории чисел, и в последующие годы другие математики воспользовались ими для доказательства некоторых теорем, но доказать Великую теорему Ферма этим путем не удалось никому.

Шумиха по поводу Великой теоремы Ферма вскоре утихла, и газеты поместили краткие заметки, в которых говорилось, что трехсотлетняя головоломка по-прежнему остается нерешенной. На стене станции нью-йоркской подземки на Восьмой стрит появилась следующая надпись, несомненно, вдохновленная публикациями в прессе по поводу Великой теоремы Ферма: «Уравнение xn + yn = zn не имеет решений. Я нашел поистине удивительное доказательство этого факта, но не могу записать его здесь, так как пришел мой поезд».

Глава десятая КРОКОДИЛЬЯ ФЕРМА Они ехали по живописной дороге в машине старого Джона, сидя на задних сиденьях. За рулем был черный водитель в яркой рубахе с причудливо подстриженной головой. На бритом черепе высились кусты жестких, как проволока, черных волос, логика

Подготовка к гонке. Аляска, ферма Линды Плетнер «Айдитарод» – ежегодные гонки на собачьих упряжках на Аляске. Протяженность маршрута – 1150 миль (1800 км). Это самая длинная в мире гонка на собачьих упряжках. Старт (торжественный) – 4 марта 2000 года из Анкоридже. Старт

Козья ферма Летом в деревне немало работы. Когда мы посетили село Хомутец, там шла заготовка сена и душистые волны от свежескошенных трав, казалось, пропитали все вокруг.Травы надо скосить вовремя, чтобы они не перезрели, тогда в них сохранится все ценное, питательное. Эту

Летняя ферма Соломинка, как молния ручная, в траву стекла; Другая, расписавшись на заборе, зажгла огонь зеленого стекла Воды в корыте лошадином. В сумрак синий Бредут, покачиваясь, девять уток по колее дух параллельных линий. Вот курица уставилась в ничто одним

Разрушенная ферма Спокойное солнце цветком темно-красным Клонилось к земле, вырастая в закат, Но занавес ночи в могуществе праздном Задергивал мир, растревоживший взгляд. Безмолвье царило на ферме без крыши, Как будто ей волосы кто-то сорвал, Над кактусом бились

Ферма или подворье? 13 февраля 1958 года все центральные московские, а затем и региональные газеты опубликовали решение ЦК компартии Украины «Об ошибке при закупке коров у колхозников в Запорожской области». Речь шла даже не обо всей области, а о двух ее районах: Приморском

Проблема Ферма В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. «В школе я любил решать задачи, я брал их домой и из каждой задачи придумывал новые. Но лучшую из задач, которые мне когда-либо попадались, я обнаружил в местной

От теоремы Пифагора до Великой теоремы Ферма О теореме Пифагора и бесконечном числе пифагоровых троек шла речь в книге Э.Т. Белла «Великая проблема» - той самой библиотечной книге, которая привлекла внимание Эндрю Уайлса. И хотя пифагорейцы достигли почти полного

Математика после доказательства Великой теоремы Ферма Как ни странно, сам Уайлс испытывал по отношению к своему докладу смешанные чувства: «Случай для выступления был выбран весьма удачно, но сама лекция вызвала у меня смешанные чувства. Работа над доказательством

Глава 63 Ферма старого Макленнона Примерно через полтора месяца после возвращения в Нью-Йорк в один из "ноябрьских вечеров в квартире Леннонов раздался телефонный звонок. Трубку сняла Йоко. Мужской голос с пуэрториканским акцентом спросил Йоко Оно. Прикинувшись

Теорема Понтрягина Одновременно с Консерваторией папа учился в МГУ, на мехмате. Он с успехом его окончил и даже некоторое время колебался в выборе профессии. Победило музыковедение, в результате выигравшее от его математического склада ума.Одним из папиных сокурсников

Теорема Теорема о праве религиозного объединения выбирать священника нуждается в доказательстве. Читается она так: "Православная община создается… под духовным руководством избранного общиной и получившего благословение епархиального архиерея священника".

I. Ферма («Здесь, от куриного помета…») Здесь, от куриного помета Одно спасение - метла. Любовь - которая по счету? - Меня в курятник завела. Клюя зерно, кудахчут куры, Шагают важно петухи. И без размера и цензуры В уме слагаются стихи. О провансальском полдне

В мире можно найти не так уж много людей, ни разу не слы­шавших о Великой теореме Ферма - пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоми­наний - невозможность доказать теорему .

Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и про­фессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма , очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула a n +b n =c n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.

Сам Ферма утверждал, что вывел весьма простое и лаконич­ное доказательство своей теории, однако до сих пор не найдено никаких документальных свидетельств этого факта. Поэтому сейчас считается, что сам Ферма так и не смог найти общего решения своей теоремы , хотя из-под его пера вышло частное доказательство для n = 4.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3), Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению

Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма , работа над которым продолжалась более семи лет. Но оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась - последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении - мало кого устраивает, что Великая теорема требует решения в 130 страниц! Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

ИСТОРИЯ ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Грандиозное событие

Как-то в новогоднем выпуске рассылки о том, как произносить тосты, я вскользь упомянул, что в конце ХХ века произошло одно грандиозное событие, которого многие не заметили - была, наконец-то доказана так называемая Великая теорема Ферма. По этому поводу среди полученных писем я обнаружил два отклика от девушек (одна из них, насколько помню - девятиклассница Вика из Зеленограда), которых удивил данный факт.

А меня удивило то, насколько живо девочки интересуются проблемами современной математики. Поэтому, думаю, что не только девочкам, но и мальчикам всех возрастов - от старшеклассников до пенсионеров, тоже будет интересно узнать историю Великой теоремы.

Доказательство теоремы Ферма - великое событие. А т.к. со словом "великий" не принято шутить, то знать историю теоремы, мне кажется, каждый уважающий себя оратор (а все мы, когда говорим - ораторы) просто обязан.

Если так получилось, что вы не любите математику так, как люблю ее я, то некоторые углубления в детали просматривайте беглым взором. Понимая, что не всем читателям нашей рассылки интересно блуждать в математических дебрях, я постарался не приводить никаких формул (кроме самого уравнения теоремы Ферма и пары гипотез) и максимально упростить освещение некоторых специфических вопросов.

Как Ферма заварил кашу

Французский юрист и по совместительству великий математик XVII века Пьер Ферма (1601-1665) выдвинул одно любопытное утверждение из области теории чисел, которое впоследствии получило название Великой (или Большой) теоремы Ферма. Это одна из самых известных и феноменальных математических теорем. Наверно, ажиотаж вокруг нее был бы не так силен, если бы в книге Диофанта Александрийского (III век н. э.) "Арифметика", которую Ферма частенько штудировал, делая пометки на ее широких полях, и которую любезно сохранил для потомков его сын Сэмюэл, не была обнаружена примерно следующая запись великого математика:

"Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях".

Она-то, эта запись, и явилась причиной последующей грандиозной суматохи вокруг теоремы.

Итак, знаменитый ученый заявил, что доказал свою теорему. Давайте же зададимся вопросом: действительно ли он ее доказал или банально соврал? Или есть другие версии, объясняющие появление той записи на полях, не дававшей спокойно спать многим математикам следующих поколений?

История Великой теоремы увлекательна, как приключение во времени. В 1636 году Ферма заявил, что уравнение вида x n +y n =z n не имеет решений в целых числах при показателе степени n>2. Это собственно и есть Большая теорема Ферма. В этой, казалось бы, простой с виду математической формуле Вселенная замаскировала невероятную сложность. Американский математик шотландского происхождения Эрик Темпл Белл в своей книге "Последняя проблема" (1961) даже предположил, что, возможно, человечество прекратит свое существование раньше, чем сможет доказать Великую теорему Ферма.

Несколько странным является то, что почему-то теорема опоздала с появлением на свет, поскольку ситуация назрела давно, ведь ее частный случай при n=2 - другая знаменитая математическая формула - теорема Пифагора, возникла на двадцать два столетия раньше. В отличие от теоремы Ферма, теорема Пифагора имеет бесконечное множество целочисленных решений, например, такие пифагоровы треугольники: (3,4,5), (5,12,13), (7,24,25), (8,15,17) … (27,36,45) … (112,384,400) … (4232, 7935, 8993) …

Синдром Великой теоремы

Кто только не пытался доказать теорему Ферма. Любой оперившийся студент считал своим долгом приложиться к Великой теореме, но доказать ее всё никак никому не удавалось. Сначала не удавалось сто лет. Потом еще сто. И еще. Среди математиков стал развиваться массовый синдром: "Как же так? Ферма доказал, а я что, не смогу, что ли?" - и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Сколько бы теорему не проверяли - она всегда оказывалась верна. Я знал одного энергичного программиста, который был одержим идеей опровергнуть Великую теорему, пытаясь найти хотя бы одно ее решение (контрпример) методом перебора целых чисел с использованием быстродействующего компьютера (в то время чаще именовавшегося ЭВМ). Он верил в успех своего предприятия и любил приговаривать: "Еще немного - и грянет сенсация!". Думаю, что в разных местах нашей планеты имелось немалое количество такого сорта смелых искателей. Ни одного решения он, конечно же, не нашел. И никакие компьютеры, хоть даже со сказочным быстродействием, никогда не смогли бы проверить теорему, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

Теорема требует доказательства

Математики знают, что если теорема не доказана, из нее может следовать всё что угодно (как истина, так и ложь), как это было с некоторыми другими гипотезами. Например, в одном из своих писем Пьер Ферма высказал предположение, что числа вида 2 n +1 (т.н. числа Ферма) обязательно простые (т.е. не имеют целочисленных делителей и делятся без остатка только на себя и на единицу), если n - степень двойки (1, 2, 4, 8, 16, 32, 64 и т.д.). Эта гипотеза Ферма прожила более ста лет - до тех пор, пока в 1732 году Леонард Эйлер не показал, что

2 32 +1 = 4 294 967 297 = 6 700 417 · 641

Затем еще почти через 150 лет (1880) Фортюне Ландри разложил на множители следующее число Ферма:

2 64 +1 = 18 446 744 073 709 551 617 = 274 177 · 67 280 421 310 721

Как они без помощи компьютеров смогли найти делители этих больших чисел - одному богу известно. В свою очередь Эйлер выдвинул гипотезу, что уравнение x 4 +y 4 +z 4 =u 4 не имеет решений в целых числах. Однако примерно через 250 лет, в 1988 году Науму Элькису из Гарварда удалось обнаружить (уже с помощью компьютерной программы), что

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4

Поэтому Большая теорема Ферма требовала доказательства, иначе она была просто гипотезой, и вполне могло быть, что где-то там в бескрайних числовых полях затеряно решение уравнения Великой теоремы.

Самый виртуозный и плодотворный математик XVIII века Леонард Эйлер, архив записей которого человечество разгребало почти целый век, доказал теорему Ферма для степеней 3 и 4 (вернее, он повторил утерянные доказательства самого Пьера Ферма); его последователь в теории чисел, Лежандр (а также независимо от него Дирихле) - для степени 5; Ламе - для степени 7. Но в общем виде теорема оставалась недоказанной.

1 марта 1847 года на заседании Парижской академии наук сразу два выдающихся математика - Габриэль Ламе и Огюстен Коши - заявили, что подошли к завершению доказательства Великой теоремы и устроили гонку, публикуя свои доказательства по частям. Однако поединок между ними был прерван, потому что в их доказательствах была обнаружена одна и та же ошибка, на которую указал немецкий математик Эрнст Куммер.

В начале XX века (1908) состоятельный немецкий предприниматель, меценат и ученый Пауль Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма. Уже в первый год после опубликования завещания Вольфскеля Геттингентской академией наук, она была завалена тысячами доказательств от любителей математики, и поток этот не прекращался в течение десятилетий, но все они, как вы догадываетесь, содержали в себе ошибки. Говорят, что в академии были заготовлены бланки примерно такого содержания:

Уважаемый __________________________!
В Вашем доказательстве теоремы Ферма на ____ странице в ____ строчке сверху
в формуле:__________________________ обнаружена следующая ошибка:,

Которые рассылались незадачливым соискателям премии.

В то время в кругу математиков появилось полупрезрительное прозвище - фермист . Так называли всякого самоуверенного выскочку, которому не хватало знаний, но зато с лихвой хватало амбиций для того, чтобы второпях попробовать силенки в доказательстве Великой теоремы, а затем, не заметив собственных ошибок, гордо хлопнув себя в грудь, громко заявить: "Я первый доказал теорему Ферма!". Каждый фермист, будь он хоть даже десятитысячным по счету, считал себя первым - это и было смешным. Простой внешний вид Великой теоремы так сильно напоминал фермистам легкую добычу, что их абсолютно не смущало, что даже Эйлер с Гауссом не смогли справиться с ней.

(Фермисты, как ни странно, существуют и ныне. Один из них хоть и не считал, что доказал теорему, как классический фермист, но до недавних пор предпринимал попытки - отказался верить мне, когда я сообщил ему, что теорема Ферма уже доказана).

Наиболее сильные математики, может быть, в тиши своих кабинетов тоже пробовали осторожно подходить к этой неподъемной штанге, но не говорили об этом вслух, дабы не прослыть фермистами и, таким образом, не навредить своему высокому авторитету.

К тому времени появилось доказательство теоремы для показателя степени n<100. Потом для n<619. Надо ли говорить о том, что все доказательства невероятно сложны. Но в общем виде теорема оставалась недоказанной.

Странная гипотеза

До середины ХХ века никаких серьезных продвижений в истории Великой теоремы не наблюдалось. Но вскоре в математической жизни произошло одно интересное событие. В 1955 году 28-летний японский математик Ютака Танияма выдвинул утверждение из совершенно другой области математики, получившее название "гипотезы Таниямы" (она же "гипотеза Таниямы-Шимуры-Вейла"), которое, в отличие от запоздалой теоремы Ферма, опередило свое время.

Гипотеза Таниямы гласит: "каждой эллиптической кривой соответствует определенная модулярная форма". Данное утверждение для математиков той поры звучало примерно так же абсурдно, как для нас звучит утверждение: "каждому дереву соответствует определенный металл". Нетрудно угадать, как может отнестись к подобному утверждению нормальный человек - он попросту не воспримет его всерьез, что и произошло: математики дружно проигнорировали гипотезу.

Небольшое пояснение. Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости). Модулярные же функции, открытые в XIX веке, имеют четырехмерный вид, поэтому мы их даже представить себе не можем своими трехмерными мозгами, но можем описать математически; кроме того, модулярные формы удивительны тем, что обладают предельно возможной симметрией - их можно транслировать (сдвигать) в любом направлении, отражать зеркально, менять местами фрагменты, поворачивать бесконечно многими способами - и при этом их вид не изменяется. Как видим, эллиптические кривые и модулярные формы имеют мало общего. Гипотеза же Таниямы утверждает, что описательные уравнения двух соответствующих друг другу этих абсолютно разных математических объектов можно разложить в один и тот же математический ряд.

Гипотеза Таниямы была слишком парадоксальна: она соединила совершенно разные понятия - довольно простые плоские кривые и невообразимые четырехмерные формы. Такое никому не приходило в голову. Когда на международном математическом симпозиуме в Токио в сентябре 1955 года Танияма продемонстрировал несколько соответствий эллиптических кривых модулярным формам, то все увидели в этом не более, чем забавные совпадения. На скромный вопрос Таниямы: возможно ли для каждой эллиптической кривой найти соответствующую модулярную функцию, маститый француз Андре Вейл, который в то время был одним из лучших в мире специалистов в теории чисел, дал вполне дипломатичный ответ, что, дескать, если пытливого Танияму не покинет энтузиазм, то, может быть, ему повезет, и его невероятная гипотеза подтвердится, но это, должно быть, случится не скоро. В общем, как и многие другие выдающиеся открытия, сначала гипотеза Таниямы осталась без внимания, потому что до нее еще не доросли - ее почти никто не понял. Один лишь коллега Таниямы, Горо Шимура, хорошо зная своего высокоодаренного друга, интуитивно чувствовал, что его гипотеза верна.

Через три года (1958) Ютака Танияма покончил жизнь самоубийством (сильны, однако, в Японии самурайские традиции). С точки зрения здравого смысла - никак не понимаемый поступок, особенно, если учесть, что совсем скоро он собирался жениться. Свою предсмертную записку лидер молодых японских математиков начал так: "Еще вчера я не помышлял о самоубийстве. Последнее время мне часто приходилось слышать от других, что я устал умственно и физически. Вообще-то я и сейчас не понимаю, зачем это делаю…" и так далее на трех листах. Жаль, конечно, что так сложилась судьба интересного человека, но все гении немного странные - на то они и гении (на ум почему-то пришли слова Артура Шопенгауэра: "в обычной жизни от гения столько же толку, как от телескопа в театре"). Гипотеза осиротела. Никто не знал, как ее доказать.

Лет десять про гипотезу Таниямы почти не вспоминали. Но в начале 70-х годов она стала популярной - ее регулярно проверяли все, кто смог в ней разобраться - и она всегда подтверждалась (как, собственно, и теорема Ферма), но, как и прежде, никто не мог ее доказать.

Удивительная связь двух гипотез

Прошло еще примерно 15 лет. В 1984 году произошло одно ключевое событие в жизни математики, которое объединило экстравагантную японскую гипотезу с Великой теоремой Ферма. Немец Герхард Фрей выдвинул любопытное утверждение, похожее на теорему: "Если будет доказана гипотеза Таниямы, то, следовательно, будет доказана и Великая теорема Ферма". Другими словами, теорема Ферма является следствием гипотезы Таниямы. (Фрей методом хитроумных математических преобразований свел уравнение Ферма к виду уравнения эллиптической кривой (той самой, которая фигурирует и в гипотезе Таниямы), более-менее обосновал свое предположение, но доказать его не смог). И вот буквально через полтора года (1986) профессор калифорнийского университета Кеннет Рибет четко доказал теорему Фрея.

Что же теперь получилось? Теперь оказалось, что, так как теорема Ферма уже точно является следствием гипотезы Таниямы, нужно всего-навсего доказать последнюю, чтобы сорвать лавры покорителя легендарной теоремы Ферма. Но гипотеза оказалась непростой. К тому же у математиков за столетия появилась аллергия на теорему Ферма, и многие из них решили, что справиться с гипотезой Таниямы также будет практически невозможно.

Смерть гипотезы Ферма. Рождение теоремы

Прошло еще 8 лет. Одному прогрессивному английскому профессору математики из Принстонского университета (Нью-Джерси, США), Эндрю Уайлсу, показалось, что он нашел доказательство гипотезы Таниямы. Если гений не лысый, то, как правило, взъерошенный. Уайлс - взъерошенный, следовательно, похож на гения. Войти в Историю, конечно, заманчиво и очень хотелось, но Уайлс, как настоящий ученый, не обольщался, понимая, что тысячам фермистов до него тоже мерещились призрачные доказательства. Поэтому, прежде, чем представить свое доказательство миру, он тщательно проверял его сам, но осознавая, что может иметь субъективную предвзятость, привлекал к проверкам также и других, например, под видом обычных математических заданий он иногда подкидывал смышленым аспирантам различные фрагменты своего доказательства. Позже Уайлс признался, что никто, кроме его жены не знал, что он работает над доказательством Великой теоремы.

И вот после долгих проверок и тягостных раздумий, Уайлс наконец-то набрался храбрости, а может, как ему самому казалось, наглости и 23 июня 1993 года на математической конференции по теории чисел в Кембридже объявил о своем великом достижении.

Это, конечно, была сенсация. Никто не ожидал такой прыти от малоизвестного математика. Тут же появилась пресса. Всех терзал жгучий интерес. Стройные формулы, как штрихи прекрасной картины, предстали перед любопытными взорами собравшихся. Настоящие математики, они ведь такие - смотрят на всякие уравнения и видят в них не цифры, константы и переменные, а слышат музыку, подобно Моцарту, смотрящему на нотный стан. Точно так же, как мы, читая книгу, смотрим на буквы, но вроде бы как их и не замечаем, а сразу воспринимаем смысл текста.

Презентация доказательства, казалось, прошла успешно - ошибок в нем не нашли - никто не услышал ни одной фальшивой ноты (хотя большинство математиков просто уставилось на него, как первоклассники на интеграл и ничего не поняли). Все решили, что произошло-таки масштабное событие: доказана гипотеза Таниямы, а следовательно и Великая теорема Ферма. Но примерно через два месяца, за несколько дней до того, как рукопись доказательства Уайлса должна была пойти в тираж, в ней было обнаружено несоответствие (Кац, коллега Уайлса, заметил, что один фрагмент рассуждений опирался на "систему Эйлера", но то, что соорудил Уайлс, такой системой не являлось), хотя в целом приемы Уайлса были признаны интересными, изящными и новаторскими.

Уайлс проанализировал ситуацию и решил, что проиграл. Можно себе представить, как он всем своим существом прочувствовал, что значит "от великого до смешного один шаг". "Хотел войти в Историю, а вместо этого вошел в состав команды клоунов и комедиантов - самонадеянных фермистов" - примерно такие мысли изматывали его в тот тягостный период жизни. Для него, серьезного ученого-математика, это была трагедия, и он забросил свое доказательство в долгий ящик.

Но вот через год с небольшим, в сентябре 1994 года, во время размышления над тем узким местом доказательства вместе со своим коллегой Тейлором из Оксфорда, последнего неожиданно осенила мысль, что "систему Эйлера" можно поменять на теорию Ивасава (раздел теории чисел). Тогда они попробовали воспользоваться теорией Ивасава, обойдясь без "системы Эйлера", и у них всё сошлось. Исправленный вариант доказательства был отдан на проверку и через год было объявлено, что в нем всё абсолютно четко, без единой ошибки. Летом 1995 года в одном из первенствующих математических журналов - "Анналы математики" - было опубликовано полное доказательство гипотезы Таниямы (следовательно, Великой (Большой) теоремы Ферма), которое заняло весь номер - свыше ста листов. Доказательство так сложно, что понять его целиком могли всего лишь несколько десятков человек во всем мире.

Таким образом, в конце ХХ века весь мир признал, что на 360 году своей жизни Великая теорема Ферма, которая на самом деле всё это время являлась гипотезой, стала-таки доказанной теоремой. Эндрю Уайлс доказал Великую (Большую) теорему Ферма и вошел в Историю.

Подумаешь, доказали какую-то теорему...

Счастье первооткрывателя всегда достается кому-то одному - это именно он последним ударом молота раскалывает твердый орешек знания. Но нельзя игнорировать множество предыдущих ударов, которые не одно столетие формировали трещину в Великой теореме: Эйлера и Гаусса (королей математики своих времен), Эвариста Галуа (успевшего за свою короткую 21-летнюю жизнь основать теории групп и полей, работы которого были признаны гениальными лишь после его смерти), Анри Пуанкаре (учредителя не только причудливых модулярных форм, но и конвенционализма - философского течения), Давида Гилберта (одного из сильнейших математиков ХХ века), Ютаку Танияму, Горо Шимуру, Морделла, Фальтингса, Эрнста Куммера, Барри Мазура, Герхарда Фрея, Кена Риббета, Ричарда Тейлора и других настоящих ученых (не побоюсь этих слов).

Доказательство Великой теоремы Ферма можно поставить в один ряд с такими достижениями ХХ века, как изобретение компьютера, ядерной бомбы и полет в космос. Хоть о нем и не так широко известно, потому что оно не вторгается в зону наших сиюминутных интересов, как например, телевизор или электрическая лампочка, но оно явилось вспышкой сверхновой звезды, которая, как и все непреложные истины, всегда будет светить человечеству.

Вы можете сказать: "подумаешь, доказали какую-то теорему, кому это надо? ". Справедливый вопрос. Тут в точности сгодится ответ Давида Гилберта. Когда на вопрос: "какая задача сейчас для науки наиболее важна?", он ответил: "поймать муху на обратной стороне Луны", его резонно спросили: "а кому это надо? ", он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить". Подумайте, сколько задач за 360 лет смогло решить человечество, прежде, чем доказать теорему Ферма. В поисках ее доказательства была открыта чуть ли не половина современной математики. Надо также учесть, что математика - авангард науки (и, кстати, единственная из наук, которая строится без единой ошибки), и любые научные достижения и изобретения начинаются именно здесь. Как заметил Леонардо да Винчи, "наукой можно признать лишь то учение, которое подтверждается математически".

* * *

А теперь давайте вернемся в начало нашей истории, вспомним запись Пьера Ферма на полях учебника Диофанта и еще раз зададимся вопросом: действительно ли Ферма доказал свою теорему? Этого мы, конечно, не можем знать наверняка, и как в любом деле тут возникают разные версии:

Версия 1: Ферма доказал свою теорему. (На вопрос: "имел ли Ферма точно такое же доказательство своей теоремы?", Эндрю Уайлс заметил: "Ферма не мог располагать таким доказательством. Это доказательство ХХ века". Мы с вами понимаем, что в XVII веке математика, конечно же, была не та, что в конце ХХ века - в ту эпоху д, Артаньяна, царица наук еще не обладала теми открытиями (модулярные формы, теоремы Таниямы, Фрея и др.), которые только и позволили доказать Великую теорему Ферма. Конечно, можно предположить: чем черт не шутит - а вдруг Ферма догадался иным путем? Эта версия хоть и вероятна, но по оценкам большинства математиков, практически невозможна);
Версия 2: Пьеру Ферма показалось, что он доказал свою теорему, но в его доказательстве были ошибки. (То есть, сам Ферма был также и первым фермистом);
Версия 3: Ферма свою теорему не доказал, а на полях просто соврал.

Если верна одна из двух последних версий, что наиболее вероятно, то тогда можно сделать простой вывод: великие люди, они хоть и великие, но тоже могут ошибаться или иногда не прочь приврать (в основном этот вывод будет полезен для тех, кто склонен безраздельно доверять своим кумирам и прочим властителям дум). Поэтому, читая произведения авторитетных сынов человечества или слушая их пафосные выступления, вы имеете полное право сомневаться в их утверждениях. (Прошу заметить, что сомневаться - не значит отвергать ).



Переиздание материалов статьи возможно только с обязательными ссылками на сайт (в интернете - гиперссылка) и на автора

В 17 веке во Франции жил юрист и по совместительству математик Пьер Ферма, который отдавал своему увлечению долгие часы досуга. Как-то зимним вечером, сидя у камина, он выдвинул одно прелюбопытнейшее утверждение из области теории чисел – именно оно в дальнейшем было названо Великой или Большой теоремой Ферма. Возможно, ажиотаж не был бы настолько весомым в математических кругах, не случись одно событие. Математик часто проводил вечера за штудированием любимой книги Диофанта Александрийского «Арифметика» (3 век), при этом записывал на ее полях важные мысли – этот раритет бережно сохранил для потомков его сын. Так вот, на широких полях этой книги рукой Ферма была оставлена такая надпись: «У меня есть довольно поразительное доказательство, но оно слишком большое, чтобы его можно было поместить на полях». Именно эта запись стала причиной ошеломительного ажиотажа вокруг теоремы. У математиков не вызывало сомнений, что великий ученый заявил о том, что доказал собственную теорему. Вы наверняка задаетесь вопросом: «Неужели он на самом деле ее доказал, или это была банальная ложь, а может есть другие версии, зачем эта запись, не дававшая умиротворенно спать математикам последующих поколений, оказалась на полях книги?».

Суть Великой теоремы

Довольно известная теорема Ферма проста по своей сути и заключается в том, что при условии, когда n больше двойки, положительного числа, уравнение Х n +Y n =Z n не будет иметь решений нулевого типа в рамках натуральных чисел. В этой с виду простой формуле была замаскирована невероятная сложность, и на ее доказательством бились целых три века. Есть одна странность – теорема опоздала с рождением на свет, так как ее частный случай при n=2 появился еще 2200 лет тому назад – это не менее знаменитая теорема Пифагора.

Необходимо отметить, что история, касающаяся всем известной теоремы Ферма, является очень поучительной и занимательной, причем не только для ученых-математиков. Что самое интересное, так это то, что наука являлась для ученого не работой, а простым хобби, которое в свою очередь, доставляла Фермеру огромное удовольствие. Также он постоянно поддерживал связь с ученым-математиком, а по совместительству, еще и другом, делился идеями, но как ни странно, собственные работы опубликовывать в свет не стремился.

Труды математика Фермера

Что касается самих работ Фермера, то их обнаружили именно в форме обычных писем. Местами не было целых страниц, и сохранились лишь обрывки переписок. Более интересен тот факт, что на протяжении трех веков ученые искали ту теорему, которая была обнаружена в трудах Фермера.

Но кто бы не решался ее доказать, попытки сводились к «нулю». Известный математик Декарт и вовсе обвинял ученого в хвастовстве, но все это сводилось лишь к самой обычной зависти. Помимо создания, Фермер еще и доказал собственную теорему. Правда решение было найдено для того случая, где n=4. Что касается случая для n=3, то его выявил математик Эйлер.

Как пытались доказать теорему Фермера

В самом начале 19 века данная теорема продолжила свое существование. Математики нашли много доказательств теорем, которые ограничивались натуральными числами в пределах двухсот.

А в 1909 году была поставлена на кон довольно крупная сумма, равная ста тысячам маркам немецкого происхождения – и все это только лишь за то, чтобы решить вопрос, связанный с этой теоремой. Сам фонд призовой категории был оставлен богатым любителем математики Паулем Вольфскелем, родом из Германии, кстати, именно он хотел «наложить на себя руки», но благодаря такой вовлеченности в теорему Фермера, захотел жить. Возникший ажиотаж породил тонны «доказательств», заполонивших германские университеты, а в кругу математиков родилось прозвище «фермист», которым полупрезрительно называли всякого амбициозного выскочку, не сумевшего привести явные доказательства.

Гипотеза японского математика Ютаки Танияма

Сдвигов в истории Великой теоремы до середины 20 столетия так и не наблюдалось, но одно занимательное событие все-таки произошло. В 1955 году математик из Японии Ютака Танияма, которому было 28 лет, явил миру утверждение из абсолютно другой математической области – его гипотеза в отличие от Ферма опередило свое время. Она гласит: «Каждой эллиптической кривой соответствует определенная модулярная форма». Вроде бы абсурд для каждого математика, подобно, что дерево состоит из определенного металла! Парадоксальную гипотезу, как и большинство прочих ошеломляющих и гениальных открытий, не приняли, так как еще попросту не доросли до нее. И Ютака Танияма покончил жизнь самоубийством, спустя три года – поступок необъяснимый, но, вероятно, честь для истинного гения-самурая была превыше всего.

Целое десятилетие о гипотезе не вспоминали, но в семидесятые она поднялась на пик популярности – ее подтверждали все, кто мог в ней разобраться, но, как и теорема Ферма, она оставалась недоказанной.

Как связаны гипотеза Таниямы и теорема Ферма

Спустя 15 лет в математике произошло ключевое событие, и оно объединило гипотезу прославленного японца и теорему Ферма. Герхард Грей заявил, что когда будет доказана гипотеза Танияма, тогда и найдутся доказательства теоремы Ферма. То есть последняя – это следствие гипотезы Танияма, и уже через полтора года профессором университета в Калифорнии Кеннетом Рибетом теорема Ферма была доказана.

Шло время, регресс заменялся прогрессом, а наука стремительно продвигалась вперед, особенно в области компьютерных технологий. Таким образом, значение n стало все больше повышаться.

В самом конце 20 века самые мощные компьютеры находились в лабораториях военного направления, было осуществлено программирование на вывод решения задачи всем известного Ферма. Как следствие всем попыткам было выявлено то, что данная теорема правильная для многих значений n, x, y. Но, к сожалению, окончательным доказательством это не стало, так как не было конкретики как таковой.

Джон Уайлс доказал великую Теорему Ферма

И вот, наконец, только в конце 1994 года, математик из Англии, Джон Уайлс нашел и продемонстрировал точное доказательство спорной теоремы Фермера. Тогда, после множества доработок, дискуссии по этому поводу пришли к своему логическому завершению.

Опровержение было размещено на более ста страницах одного журнала! Причем теорема была доказана на более современном аппарате высшей математики. И что удивительно, на тот момент, когда Фермер писал свой труд, такого аппарата в природе не существовало. Словом, человек был признан гением в этой области, с чем поспорить не мог никто. Несмотря на все что было, на сегодняшний день можно быть уверенными в том, что представленная теорема великого ученого Фермера оправдана и доказана, и споры и на эту тему не заведет ни одни математик со здравым смыслом, с чем согласны даже самые заядлые скептики всего человечества.

Полное имя человека, в честь которого была названа представленная теорема, звали Пьер де Фермер. Он внес свой вклад в самые разнообразные области математики. Но, к сожалению, большинство его трудов были опубликованы только после его смерти.

НОВОСТИ НАУКИ И ТЕХНИКИ

УДК 51:37;517.958

А.В. Коновко, к.т.н.

Академия государственной противопожарной службы МЧС России ВЕЛИКАЯ ТЕОРЕМА ФЕРМА ДОКАЗАНА. ИЛИ НЕТ?

В течение нескольких столетий доказать, что уравнение xn+yn=zn при n>2 неразрешимо в рациональных, а значит, и целых числах не удавалось. Родилась эта задача под авторством французского юриста Пьера Ферма, который параллельно профессионально занимался математикой. Её решение признаётся за американским учителем математики Эндрю Уайлсом. Это признание длилось с 1993 по 1995 г.

THE GREAT FERMA"S THEOREM IS PROVED. OR NO?

The dramatic history of Fermat"s last theorem proving is considered. It took almost four hundred years. Pierre Fermat wrote little. He wrote in compressed style. Besides he did not publish his researches. The statement that equation xn+yn=zn is unsolvable on sets of rational numbers and integers if n>2 was attended by Fermat"s commentary that he has found indeed remarkable proving to this statement. The descendants were not reached by this proving. Later this statement was called Fermat"s last theorem. The world best mathematicians broke lance over this theorem without result. In the seventies the French mathematician member of Paris Academy of Sciences Andre Veil laid down new approaches to the solution. In 23 of June, in 1993, at theory of numbers conference in Cambridge, the mathematician of Princeton University Andrew Whiles announced that the Fermat"s last theorem proving is gotten. However it was early to triumph.

В 1621 году французским литератором и любителем математики Клодом Гаспаром Баше де Мезириаком был издан греческий трактат "Арифметики" Диофанта с латинским переводом и комментариями. Роскошная, с необыкновенно широкими полями "Арифметика", попала в руки двадцатилетнему Ферма и на долгие годы стала его настольной книгой. На ее полях он оставил 48 замечаний, содержащих открытые им факты о свойствах чисел. Здесь же, на полях "Арифметики" была сформулирована великая теорема Ферма: "Невозможно разложить куб на два куба или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же показателем; я нашел этому поистине чудесное доказательство, которое из-за недостатка места не может поместиться на этих полях". Кстати, на латыни -это выглядит таким образом: «Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet».

Великий французский математик Пьер Ферма (1601-1665) развил метод определения площадей и объемов, создал новый метод касательных и экстремумов. Наряду с Декартом он стал создателем аналитической геометрии, вместе с Паскалем стоял у истоков теории вероятностей, в области метода бесконечно малых дал общее правило дифференцирования и доказал в общем виде правило интегрирования степенной функции... Но, главное, с этим именем связана одна из самых загадочных и драматичных историй, когда-либо потрясавших математику - история доказательства великой теоремы Ферма. Сейчас эту теорему выражают в виде простого утверждения: уравнение xn + yn = zn при n>2 неразрешимо в рациональных, а значит, и целых числах. Кстати, для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик Ал-Ходжанди, но его доказательство не сохранилось.

Уроженец юга Франции, Пьер Ферма получил юридическое образование и с 1631 состоял советником парламента города Тулузы (т.е. высшего суда). После рабочего дня в стенах парламента, он принимался за математику и тут же погружался в совершенно другой мир. Деньги, престиж, общественное признание - все это не имело для него никакого значения. Наука никогда не становилась для него заработком, не превращалась в ремесло, всегда оставаясь лишь захватывающей игрой ума, понятной лишь единицам. С ними он и вел свою переписку.

Ферма никогда не писал научных работ в нашем привычном понимании. А в его переписке с друзьями всегда присутствует некоторый вызов, даже своеобразная провокация, а отнюдь не академическое изложение проблемы и ее решения. Потому многие из его писем впоследствии так и стали именоваться: вызовом.

Быть может, именно поэтому он так и не осуществил своего намерения написать специальное сочинение по теории чисел. А между тем это была его любимейшая область математики. Именно ей Ферма посвятил самые вдохновенные строки своих писем. "Арифметика, - писал он, - имеет свою собственную область, теорию целых чисел. Эта теория была лишь слегка затронута Евклидом и не была достаточно разработана его последователями (если только она не содержалась в тех работах Диофанта, которых нас лишило разрушительное действие времени). Арифметики, следовательно, должны ее развить и возобновить".

Отчего же сам Ферма не боялся разрушительного действия времени? Писал он мало и всегда очень сжато. Но, самое главное, он не публиковал свои работы. При его жизни они циркулировали лишь в рукописях. Не удивительно поэтому, что результаты Ферма по теории чисел дошли до нас в разрозненном виде. Но, вероятно, прав был Булгаков: великие рукописи не горят! Работы Ферма остались. Они остались в его письмах к друзьям: лионскому учителю математики Жаку де Билли, сотруднику монетного двора Бернар Френикель де Бесси, Марсенни, Декарту, Блез Паскалю... Осталась "Арифметика" Диофанта с его замечаниями на полях, которые после смерти Ферма, вошли вместе с комментариями Баше в новое издание Диофанта, выпущенное старшим сыном Самюэлем в 1670 году. Не сохранилось только самого доказательства.

За два года до смерти Ферма отправил своему другу Каркави письмо-завещание, которое вошло в историю математики под названием «Сводка новых результатов в науке о числах». В этом письме Ферма доказал свое знаменитое утверждение для случая п = 4. Но тогда его интересовало, скорее всего, не само утверждение, а открытый им метод доказательств, названный самим Ферма бесконечным или неопределенным спуском.

Рукописи не горят. Но, если бы не самоотверженность Самюэля, собравшего после смерти отца все его математические наброски и небольшие трактаты, а затем издавшего их в 1679 году под названием «Разные математические сочинения», ученым математикам многое бы пришлось открывать и переоткрывать заново. Но и после их издания проблемы, поставленные великим математиком, пролежали без движения более семидесяти лет. И это не удивительно. В том виде, в каком они появились в печати, теоретико-числовые результаты П. Ферма предстали перед специалистами в виде серьезных, далеко не всегда понятных современникам проблем, почти без доказательств, и указаний на внутренние логические связи между ними. Возможно, в отсутствии стройной, продуманной теории и кроется ответ на вопрос, отчего сам Ферма так и не собрался издать книгу по теории чисел. Через семьдесят лет этими работами заинтересовался Л. Эйлер, и это было воистину их вторым рождением...

Математика дорого заплатила за своеобразную манеру Ферма излагать свои результаты, как будто специально опуская их доказательства. Но, если уж Ферма утверждал, что доказал ту или иную теорему, то впоследствии эту теорему обязательно доказывали. Однако с великой теоремой получилась заминка.

Загадка всегда будоражит воображение. Целые континенты покорила загадочная улыбка Джоконды; теория относительности, как ключ к загадке пространственно-временных связей стала самой популярной физической теорией века. И можно смело утверждать, что не было другой такой математической проблемы, которая была бы столь популярна, как вели__93

Научные и образовательные проблемы гражданской защиты

кая теорема Ферма. Попытки доказать ее привели к созданию обширного раздела математики - теории алгебраических чисел, но (увы!) сама теорема оставалась недоказанной. В 1908 году немецкий математик Вольфскель завещал 100000 марок тому, кто докажет теорему Ферма. Это была огромная по тем временам сумма! В один момент можно было стать не только знаменитым, но и сказочно разбогатеть! Не удивительно поэтому, что гимназисты даже далекой от Германии России наперебой бросились доказывать великую теорему. Что уж говорить о профессиональных математиках! Но...тщетно! После Первой мировой войны деньги обесценились, и поток писем с псевдодоказательствами начал иссякать, хотя совсем, конечно, так и не прекратился. Рассказывают, что известный немецкий математик Эдмунд Ландау заготовлял печатные формуляры для рассылки авторам доказательств теоремы Ферма: "На стр. ... , в строке... имеется ошибка". (Находить ошибку поручалось доценту.) Курьезов и анекдотов, связанных с доказательством этой теоремы, набралось столько, что из них можно было бы составить книгу. Последним анекдотом выглядит детектив А. Марининой «Стечение обстоятельств», экранизированный и прошедший по телеэкранам страны в январе 2000 года. В нем недоказанную всеми своими великими предшественниками теорему доказывает наш с вами соотечественник и претендует за это на Нобелевскую премию. Как известно, изобретатель динамита проигнорировал в своем завещании математиков, так что автор доказательства мог претендовать разве что на Филдсовскую золотую медаль - высшую международную награду, утвержденную самими математиками в 1936 году.

В классической работе выдающегося отечественного математика А.Я. Хинчина, посвященной великой теореме Ферма, даются сведения по истории этой проблемы и уделяется внимание методу, которым мог пользоваться Ферма при доказательстве своей теоремы. Приводятся доказательство для случая п = 4 и краткий обзор других важнейших результатов.

Но к моменту написания детектива, а тем более, к моменту его экранизации общее доказательство теоремы было уже найдено. 23 июня 1993 года на конференции по теории чисел в Кембридже математик из Принстона Эндрю Уайлс анонсировал, что доказательство великой теоремы Ферма получено. Но совсем не так, как «обещал» сам Ферма. Тот путь, по которому пошел Эндрю Уайлс, основывался отнюдь не на методах элементарной математики. Он занимался так называемой теорией эллиптических кривых.

Чтобы получить представление об эллиптических кривых, необходимо рассмотреть плоскую кривую, заданную уравнением третьей степени

У(х,у) = а30Х + а21х2у+ ... + а1х+ а2у + а0 = 0. (1)

Все такие кривые разбиваются на два класса. К первому классу относятся те кривые, у которых имеются точки заострения (как, например, полукубическая парабола у2 = а2-Х с точкой заострения (0; 0)), точки самопересечения (как Декартов лист х3+у3-3аху = 0, в точке (0; 0)), а также кривые, для которых многочлен Дх,у) представляется в виде

f(x^y)=:fl(x^y)■:f2(x,y),

где ^(х,у) и ^(х,у) - многочлены меньших степеней. Кривые этого класса называются вырожденными кривыми третьей степени. Второй класс кривых образуют невырожденные кривые; мы будем называть их эллиптическими. К таковым может быть отнесен, например, Локон Аньези (х2 + а2)у - а3 = 0). Если коэффициенты многочлена (1) - рациональные числа, то эллиптическая кривая может быть преобразована к так называемой канонической форме

у2= х3 + ах +Ь. (2)

В 1955 году японскому математику Ю. Танияме (1927-1958) в рамках теории эллиптических кривых удалось сформулировать гипотезу, которая открыла путь для доказательства теоремы Ферма. Но об этом не подозревал тогда ни сам Танияма, ни его коллеги. Почти двадцать лет эта гипотеза не привлекала к себе серьезного внимания и стала популярной лишь в середине 70-х годов. В соответствии с гипотезой Таниямы всякая эллиптическая

кривая с рациональными коэффициентами является модулярной. Однако пока что формулировка гипотезы мало говорит дотошному читателю. Потому потребуются некоторые определения.

С каждой эллиптической кривой можно связать важную числовую характеристику - ее дискриминант. Для кривой, заданной в канонической форме (2), дискриминант А определяется формулой

А = -(4а + 27b2).

Пусть Е - некоторая эллиптическая кривая, заданная уравнением (2), где а и b - целые числа.

Для простого числа р рассмотрим сравнение

y2 = х3 + ах + b(mod p), (3)

где а и b - остатки от деления целых чисел а и b на р, и обозначим через np число решений этого сравнения. Числа пр очень полезны при исследовании вопроса о разрешимости уравнений вида (2) в целых числах: если какое-то пр равно нулю, то уравнение (2) не имеет целочисленных решений. Однако вычислить числа пр удается лишь в редчайших случаях. (В то же время известно, что р-п| < 2Vp (теоремаХассе)).

Рассмотрим те простые числа р, которые делят дискриминант А эллиптической кривой (2). Можно доказать, что для таких р многочлен х3 + ах + b можно записать одним из двух способов:

х3 + ах + b = (х + а)2 (х + ß)(mod Р)

х3 + ах + b = (х + у)3 (mod p),

где а, ß, у - некоторые остатки от деления на р. Если для всех простых р, делящих дискриминант кривой, реализуется первая из двух указанных возможностей, то эллиптическая кривая называется полустабильной.

Простые числа, делящие дискриминант, можно объединить в так называемый кондуктор эллиптической кривой. Если Е - полустабильная кривая, то ее кондуктор N задается формулой

где для всех простых чисел p > 5, делящих А, показатель еР равен 1. Показатели 82 и 83 вычисляются с помощью специального алгоритма.

По существу - это всё, что необходимо для понимания сути доказательства. Однако в гипотезе Таниямы присутствует непростое и в нашем случае ключевое понятие модулярности. Поэтому забудем на время об эллиптических кривых и рассмотрим аналитическую функцию f (т.е. ту функцию, которая может быть представлена степенным рядом) комплексного аргумента z, заданного в верхней полуплоскости.

Обозначим через Н верхнюю комплексную полуплоскость. Пусть N - натуральное и к - целое числа. Модулярной параболической формой веса к уровня N называется аналитическая функцияf(z), заданная в верхней полуплоскости и удовлетворяющая соотношению

f = (cz + d)kf (z) (5)

для любых целых чисел а, b, с, d таких, что аё - bc = 1 и с делится на N. Кроме того, предполагается, что

lim f (r + it) = 0,

где r - рациональное число, и что

Пространство модулярных параболических форм веса k уровня N обозначается через Sk(N). Можно показать, что оно имеет конечную размерность.

В дальнейшем нас будут особо интересовать модулярные параболические формы веса 2. Для малых N размерность пространства S2(N) представлена в табл. 1. В частности,

Размерности пространства S2(N)

Таблица 1

N<10 11 12 13 14 15 16 17 18 19 20 21 22

0 1 0 0 1 1 0 1 0 1 1 1 2

Из условия (5) следует, что % + 1) = для каждой формы f е S2(N). Стало быть, f является периодической функцией. Такую функцию можно представить в виде

Назовем модулярную параболическую форму А^) в S2(N) собственной, если ее коэффициенты - целые числа, удовлетворяющие соотношениям:

а г ■ а = а г+1 ■ р ■ с Г_1 для простого р, не делящего число N; (8)

(ap) для простого р, делящего число N;

атп = ат ап, если (т,п) = 1.

Сформулируем теперь определение, играющее ключевую роль в доказательстве теоремы Ферма. Эллиптическая кривая с рациональными коэффициентами и кондуктором N называется модулярной, если найдется такая собственная форма

f (z) = ^anq" g S2(N),

что ар = р - пр для почти всех простых чисел р. Здесь пр - число решений сравнения (3).

Трудно поверить в существование хотя бы одной такой кривой. Представить, что найдется функция А(г), удовлетворяющая перечисленным жестким ограничениям (5) и (8), которая разлагалась бы в ряд (7), коэффициенты которой были бы связаны с практически невычислимыми числами Пр, довольно сложно. Но смелая гипотеза Таниямы отнюдь не ставила под сомнение факт их существования, а накопленный временем эмпирический материал блестяще подтвердил ее справедливость. После двух десятилетий почти полного забвения гипотеза Таниямы получила в работах французского математика, члена Парижской Академии наук Андре Вейля как бы второе дыхание.

Родившийся в 1906 году А. Вейль стал со временем одним из основателей группы математиков, выступавших под псевдонимом Н. Бурбаки. С 1958 года А. Вейль становится профессором Принстонского института перспективных исследований. И к этому же периоду относится возникновение его интереса к абстрактной алгебраической геометрии. В семидесятые годы он обращается к эллиптическим функциям и гипотезе Таниямы. Монография, посвященная эллиптическим функциям, была переведена у нас, в России . В своем увлечении он не одинок. В 1985 году немецкий математик Герхард Фрей предположил, что если теорема Ферма неверна, то есть если найдется такая тройка целых чисел а, Ь, с, что а" + Ьп = = с" (п > 3), то эллиптическая кривая

у2 = х (х - а")-(х - сп)

не может быть модулярной, что противоречит гипотезе Таниямы. Самому Фрею не удалось доказать это утверждение, однако вскоре доказательство было получено американским математиком Кеннетом Рибетом. Другими словами, Рибет показал, что теорема Ферма является следствием гипотезы Таниямы.

Он сформулировал и доказал следующую теорему:

Теорема 1 (Рибет). Пусть Е - эллиптическая кривая с рациональными коэффициентами, имеющая дискриминант

и кондуктор

Предположим, что Е является модулярной, и пусть

/ (г) = q + 2 аАп е ^ (N)

есть соответствующая собственная форма уровня N. Фиксируем простое число £, и

р:еР =1;- " 8 р

Тогда существует такая параболическая форма

/(г) = 2 dnqn е N)

с целыми коэффициентами, что разности ап - dn делятся на I для всех 1 < п<ад.

Ясно, что если эта теорема доказана для некоторого показателя, то тем самым она доказана и для всех показателей, кратных п. Так как всякое целое число п > 2 делится или на 4, или на нечетное простое число, то можно поэтому ограничиться случаем, когда показатель равен либо 4, либо нечетному простому числу. Для п = 4 элементарное доказательство теоремы Ферма было получено сначала самим Ферма, а потом Эйлером. Таким образом, достаточно изучить уравнение

а1 + Ь1 =с1, (12)

в котором показатель I есть нечетное простое число.

Теперь теорему Ферма можно получить простыми вычислениями (2).

Теорема 2. Из гипотезы Таниямы для полустабильных эллиптических кривых следует последняя теорема Ферма.

Доказательство. Предположим, что теорема Ферма неверна, и пусть есть соответствующий контрпример (как и выше, здесь I - нечетное простое число). Применим теорему 1 к эллиптической кривой

у2 = х (х - ае) (х - с1).

Несложные вычисления показывают, что кондуктор этой кривой задается формулой

Сравнивая формулы (11) и (13), мы видим, что N = 2. Следовательно, по теореме 1 найдется параболическая форма

лежащая в пространстве 82(2). Но в силу соотношения (6) это пространство нулевое. Поэтому dn = 0 для всех п. В то же время а^ = 1. Стало быть, разность аг - dl = 1 не делится на I и мы приходим к противоречию. Таким образом, теорема доказана.

Эта теорема давала ключ к доказательству великой теоремы Ферма. И все же сама гипотеза оставалась все ещё недоказанной.

Анонсировав 23 июня 1993 года доказательство гипотезы Таниямы для полустабильных эллиптический кривых, к которым относятся и кривые вида (8), Эндрю Уайлс поторопился. Математикам было рано праздновать победу.

Быстро закончилось теплое лето, осталась позади дождливая осень, наступила зима. Уайлс писал и переписывал набело окончательный вариант своего доказательства, но дотошные коллеги находили в его работе все новые и новые неточности. И вот, в начале декабря 1993 года, за несколько дней до того, как рукопись Уайлса должна была пойти в печать, в его доказательстве были вновь обнаружены серьезные пробелы. И тогда Уайлс понял, что за день-два он уже не сможет ничего исправить. Здесь требовалась серьезная доработка. Публикацию работы пришлось отложить. Уайлс обратился за помощью к Тейлору. «Работа над ошибками» заняла больше года. Окончательный вариант доказательства гипотезы Таниямы, написанный Уайлсом в сотрудничестве с Тейлором, вышел в свет лишь летом 1995 года.

В отличие от героя А. Марининой Уайлс не претендовал на Нобелевскую премию, но, все же... какой-то наградой его должны были отметить. Вот только какой? Уайлсу в то время уже перевалило на пятый десяток, а золотые медали Филдса вручаются строго до сорока лет, пока еще не пройден пик творческой активности. И тогда для Уайлса решили учредить специальную награду - серебряный знак Филдсовского комитета. Этот знак и был вручен ему на очередном конгрессе по математике в Берлине.

Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду. Молодым математикам такая задача досталась в наследство от Иоганна Кеплера. Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках». Интерес Кеплера к расположению и самоорганизации частиц вещества и привел его к обсуждению другого вопроса - о плотней-шей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. В работе , например, утверждается (но не доказывается), что такой формой является тетраэдр, оси координат внутри которого определяют базисный угол ортогональности в 109о28", а не 90о. Эта проблема имеет огромное значение для физики элементарных частиц, кристаллографии и др. разделов естествознания.

Литература

1. Вейль А. Эллиптические функции по Эйзенштейну и Кронекеру. - М., 1978.

2. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал. - № 2. - 1998. - С. 78-95.

3. Сингх С. Великая теорема Ферма. История загадки, которая занимала лучшие умы мира на протяжении 358 лет / Пер. с англ. Ю.А. Данилова. М.: МЦНМО. 2000. - 260 с.

4. Мирмович Э.Г., Усачёва Т.В. Алгебра кватернионов и трёхмерные вращения // Настоящий журнал № 1(1), 2008. - С. 75-80.