У этой науки было и другое название, ныне почти забытое: минеральная химия. Оно достаточно четко определяло содержание науки: изучение веществ, главным образом твердых, которые составляют мир неживой природы. Анализ природных неорганических веществ, прежде всего минералов, позволил в XVIII-XIX вв. открыть большое количество элементов, существующих на Земле. И каждое такое открытие давало неорганической химии новый материал, расширяло количество объектов для ее исследований.

Название «неорганическая» прочно закрепилось в научном языке тогда, когда стала интенсивно развиваться органическая химия, изучавшая природные и синтетические органические вещества. Их число в XIX в. стремительно возрастало с каждым годом, потому что синтезировать новые органические соединения было легче и проще, чем неорганические. И теоретическая база у органической химии долгое время была солиднее: достаточно назвать бутле-ровскую теорию химического строения органических соединений. Наконец, разнообразие органических веществ оказалось проще четко классифицировать.

Все это на первых порах привело к разграничению объектов исследования двух основных разделов химической науки. Органическую химию стали определять как область химии, изучающую углеродсодер-жащие вещества. Уделом же неорганической оказывалось познание свойств всех прочих химических соединений. Это различие сохранилось и в современном определении неорганической химии: науки о химических элементах и образуемых ими простых и сложных химических соединениях. Всех элементов, кроме углерода. Правда, всегда делают оговорку, что некоторые простые соединения углерода - оксиды и их производные, карбиды и некоторые другие - должны быть причислены к неорганическим веществам.

Однако стало очевидным, что резкого разграничения между неорганикой и органикой нет. В самом деле, ведь известны такие обширные классы веществ, как элементоорганические (в особенности металло-органические) и координационные (комплексные) соединения, которые не просто однозначно отнести ни к органической, ни к неорганической химии.

История научной химии началась с неорганики. И потому не удивительно, что именно в русле неорганической химии возникли важнейшие понятия и теоретические представления, способствовавшие развитию химии в целом. На материале неорганической химии была разработана кислородная теория горения, установлены основные стехиометрические законы (см. Стехиометрия), наконец, создано атом-но-молекулярное учение. Сравнительное изучение свойств элементов и их соединений и закономерностей изменения этих свойств по мере увеличения атомных масс привело к открытию периодического закона и построению периодической системы химических элементов, которая стала важнейшей теоретической основой неорганической химии. Способствовало ее прогрессу и развитие производства многих практически важных веществ - кислот, соды, минеральных удобрений. Заметно вырос престиж неорганической химии после осуществления промышленного синтеза аммиака.

Тормозом для развития химии вообще, а неорганической в особенности было отсутствие точных представлений о строении атомов. Создание теории строения атомов имело для нее колоссальное значение. Теория объяснила причину периодического изменения свойств элементов, способствовала появлению теорий валентности и представлений о природе химической связи в неорганических соединениях, понятия об ионной и ковалентной связи. Более глубокое понимание природы химической связи было достигнуто в рамках квантовой химии.

Так неорганическая химия стала строгой теоретической дисциплиной. Но постоянно совершенствовалась и техника эксперимента. Новое лабораторное оборудование позволяло применять для химических синтезов неорганических соединений температуры в несколько тысяч градусов и близкие к абсолютному нулю; использовать давления в сотни тысяч атмосфер и, наоборот, проводить реакции в условиях глубокого вакуума. Действие электрических разрядов, излучений большой интенсивности также было взято на вооружение химиками-неорганиками. Больших успехов достиг каталитический неорганический синтез.

Почти все известные химические элементы, не только существующие на Земле, но и полученные в ядерных реакциях, находят практическое применение. Например, плутоний стал основным ядерным горючим, и его химия изучена, пожалуй, полнее, чем многих других элементов менделеевской системы. Но чтобы практика сочла возможным использовать какой-либо химический элемент, химики-неорганики предварительно должны были всесторонне познать его свойства. Особенно это касается так называемых редких элементов.

Перед современной неорганической химией стоят две основные задачи. Объектами исследования первой из них являются атом и молекула: важно знать, как связаны свойства веществ со строением атомов и молекул. Здесь неоценимую помощь оказывают различные физические методы исследования (см. Физическая химия). Идеи и представления физической химии давно используются химиками-неорганиками.

Вторая задача - разработка научных основ получения неорганических веществ и материалов с заранее заданными свойствами. Такие неорганические соединения необходимы новой технике. Ей нужны вещества жаростойкие, имеющие высокую механическую прочность, устойчивые по отношению к самым агрессивным химическим реагентам, а также вещества очень высокой степени чистоты, полупроводниковые материалы и т. д. Постановке экспериментов здесь предшествуют строгие и сложные теоретические расчеты, и для их проведения часто используются электронные вычислительные машины. Во многих случаях неорганической химии удается правильно предсказать, будет ли предполагаемый продукт синтеза обладать требуемыми свойствами.

Объем исследований в неорганической химии сейчас настолько велик, что в ней сформировались самостоятельные разделы: химии отдельных элементов (например, химия азота, химия фосфора, химия урана, химия плутония) или их определенных совокупностей (химия переходных металлов, химия редкоземельных элементов, химия трансурановых элементов). В качестве самостоятельных объектов исследования могут рассматриваться различные классы неорганических соединений (скажем, химия гидридов, химия карбидов). Этим отдельным «ветвям» и «веточкам» могучего «древа» неорганической химии ныне посвящаются специальные монографии. И конечно же, возникают и будут возникать новые разделы этой древней и всегда молодой науки. Так, в последние десятилетия возникли химия полупроводников и химия инертных газов.

НЕОРГАНИЧЕСКАЯ ХИМИЯ

Учебно-методический комплекс

Часть первая. Программа лекционного курса

Нижний Новгород, 2006


УДК 546 (073.8)

Неорганическая химия: Учебно-методический комплекс. Часть первая. Программа лекционного курса / А.А.Сибиркин.- Нижний Новгород: ННГУ, 2006.- 34 с.

Первая часть учебно-методического комплекса содержит план курса лекций по неорганической химии для студентов первого курса химического факультета ННГУ им. Н.И.Лобачевского.

Для студентов 1 курса химического факультета, изучающих курс неорганической химии.

© А.А.Сибиркин, 2006

© Нижегородский госуниверситет

им. Н.И.Лобачевского, кафедра

неорганической химии


Пояснительная записка

Курс неорганической химии, преподаваемый на химическом факультете ННГУ, ставит своей целью обеспечить овладение студентами основами неорганической химии как одной из фундаментальных дисциплин в системе химического знания.

Основными задачами курса являются: усвоение студентами основных закономерностей химических превращений; знание фактического материала, относящегося к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ; формирование умения решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ; овладение на практике основами химического эксперимента, важнейшими методами получения и очистки неорганических веществ.

Содержание курса предусматривает разъяснение важнейших понятий физической химии и строения вещества, развитие умения применять изученные закономерности для решения практических задач, что реализует идею концентричности химического образования в высшей школе. Понимание закономерностей протекания реакций и реакционной способности веществ является основой для формирования обширных и глубоких знаний фактического материала по химии элементов и их соединений.

В результате изучения курса неорганической химии студенты должны:

Знать, как научные теории объясняют процессы взаимодействия веществ, описывают количественные соотношения между участниками химического превращения, указывают на возможность самопроизвольного протекания процесса, характеризуют скорость превращений, рассматривают состояние вещества и его превращения в растворах.

Знать фактический материал, относящийся к распространенности и формам нахождения химических элементов в природе, принципам переработки минерального сырья, методам получения, строению, физическим свойствам и реакционной способности, практическому использованию неорганических веществ.

Уметь анализировать свойства химических элементов на основании их положения в периодической системе, объяснять тенденции изменения свойств в ряду аналогичных веществ, на основании теории строения атома и химической связи раскрывать зависимость свойств веществ от их состава и строения, прогнозировать свойства веществ, предсказывать вероятные продукты химического превращения в конкретных условиях, связывать свойства вещества с возможными областями их применения.

Уметь пользоваться химической символикой, номенклатурой неорганических веществ, терминологией физической и неорганической химии.

Уметь составлять химические уравнения, расставлять стехиометрические коэффициенты, решать стандартные и комбинированные на их основе расчетные задачи, относящиеся к свойствам неорганических веществ и закономерностям их превращения.

Обладать навыками работы с учебной, справочной, монографической литературой, самостоятельно находить необходимые сведения по химии элементов и их соединений, уметь объединять, анализировать и систематизировать литературные данные.

Обладать практическими навыками лабораторного химического эксперимента, методами безопасной работы в химической лаборатории, реализовывать методики синтеза и очистки неорганических веществ, уметь формулировать заключение о природе вещества по совокупности полученных экспериментальных данных.

Иметь представление об электронном строении атомов, молекул, твердых тел, комплексных соединений, о методах исследования неорганических веществ.

Теоретической базой, необходимой для успешного освоения курса неорганической химии, являются:

1. Курсы химии, математики и физики, преподаваемые в средних общеобразовательных школах или в средних специальных учебных заведениях химического профиля.

2. Курсы строения вещества и кристаллохимии, преподаваемые параллельно с курсом неорганической химии на химическом факультете ННГУ.

3. Знание основных разделов физической химии, предусмотренных этой программой, изучение которых предшествует изложению основного материала неорганической химии.

Лекционный курс по неорганической химии и его программа состоят из четырех разделов. Раздел «Теоретические основы неорганической химии» объединяет учебный материал, посвященный химической терминологии, символике и номенклатуре, газовым законам и стехиометрии, основам химической термодинамики, теории растворов и фазовых равновесий, электрохимии, химической кинетике, учению о координационных соединениях. Усвоение этих понятий необходимо для того, чтобы последующее изучение фактического материала неорганической химии можно было вести на современной теоретической базе и заложить основы решения расчетных задач.

Разделы «Химия элементов – неметаллов» и «Химия элементов – металлов» раскрывают основное содержание курса – фактический материал неорганической химии, который систематизирован на основе периодического закона. Сведения о химических элементах излагаются в определенной последовательности: нахождение в природе, изотопный состав, положение в периодической системе, строение атома и валентные возможности, биологическая роль. Знания о соединениях химических элементов формируются в следующем логическом порядке: получение, строение, физические и химические свойства, применение, техника безопасной работы. Программой предусмотрена сравнительная характеристика свойств элементов и их соединений на основании положения в периодической системе (устойчивость степеней окисления, изменение кислотно-основных и окислительно-восстановительных свойств соединений), которая обобщает учебный материал по данному элементу или подгруппе.

В «Заключении» на основе периодического закона систематизированы общие свойства неметаллов и металлов, раскрываются некоторые вопросы геохимии и радиохимии, кратко освещаются методы исследования неорганических соединений. Изучение этих разделов способствует закреплению логических связей, сформированных в ходе рассмотрения фактического материала курса.

Лекционный курс по неорганической химии рассчитан на 140 часов в первом и втором учебных семестрах. Курс сопровождается проведением практических занятий (70 часов), на которых студенты знакомятся с приемами решения расчетных задач, и выполнением лабораторного практикума (140 часов). Изучение курса неорганической химии предполагает самостоятельную работу студента (150 часов), сдачу коллоквиумов и написание контрольных работ. В каждом из семестров студенты сдают зачет по лабораторному практикуму и экзамен по теоретическому курсу.

Теоретические основы неорганической химии

Основные понятия и законы химии. Атомно-молекулярное учение. Классическое и современное понятие атома. Строение атома. Атомное ядро, нуклоны, электроны, электронные оболочки. Атомный номер и массовое число. Изотопы. Химические элементы. Химическая связь. Ионная и ковалентная связь. Молекулы и формульные единицы.

Моль. Постоянная Авогадро. Количество вещества. Масса, объем и плотность вещества. Атомная и молярная массы. Молярный объем. Атомная единица массы. Относительная атомная и молекулярная массы.

Химический индивид и его признаки. Однородность вещества, понятия фазы и области гомогенности. Характерное строение. Молекулярное и кристаллохимическое строение. Основные понятия химии твердого тела. Элементарная ячейка. Трансляция. Дальний порядок. Представление о полиморфизме и изоморфизме. Определенность состава и закон постоянства состава. Закон кратных отношений. Химический индивид и чистое вещество. Сложное вещество и химическое соединение. Простое вещество и химический элемент. Аллотропия и полиморфизм.

Химическая символика. Номенклатура неорганических соединений.

Система и окружающая среда. Закрытые, открытые и изолированные системы. Гомогенные и гетерогенные системы. Состояние системы и параметры состояния. Стационарное и равновесное состояния системы. Процессы в системе и их классификация. Интенсивные и экстенсивные параметры состояния.

Понятие компонента. Способы выражения состава систем. Массовая и молярная доли. Молярная и моляльная концентрации. Титр. Растворимость. Закон сохранения массы и условие материального баланса. Молярная масса смеси.

Вариантность системы. Понятие независимого компонента. Правило фаз. Диаграмма состояния индивидуального вещества. Фигуративные точки. Фазовые переходы. Применение правила фаз для анализа диаграмм состояния.

Методы определения атомных и молекулярных масс. Экспериментальные методы определения молярных масс летучих веществ. Методы Реньо, Майера и Дюма. Расчет молярных масс из газовых законов. Определение молярных масс нелетучих веществ из коллигативных свойств растворов. Экспериментальное определение атомных масс. Методы, основанные на законе простых объемных отношений. Метод Канниццаро. Масс-спектрометрический метод. Оценка атомных масс из правила Дюлонга и Пти.

Газовые законы. Понятие идеального газа. Уравнение состояния идеального газа. Универсальная газовая постоянная и ее физический смысл. Условия измерения объема. Молярный объем идеального газа. Закон Авогадро. Плотность и относительная плотность газов. Уравнения Клапейрона, Бойля и Мариотта, Гей-Люссака, Шарля.

Смеси идеальных газов. Парциальное давление компонента. Закон парциальных давлений. Объемная доля компонента газовой смеси. Давление насыщенного пара. Математическое описание эвдиометра.

Стехиометрия. Химическая переменная и ее связь с другими экстенсивными величинами. Избыток и недостаток реагентов. Выход продукта реакции. Массовая доля элемента в соединении и установление формул веществ. Простейшая и истинная формулы. Установление состава смесей. Стехиометрия реакций с участием газообразных веществ. Закон простых объемных отношений.

Понятие эквивалента. Эквивалентное число реакции. Эквивалентное число вещества и его физический смысл. Закон эквивалентов. Эквивалентная масса и эквивалентный объем. Эквивалентная масса бинарного соединения. Эквивалентная (нормальная) концентрация. Стехиометрия окислительно-восстановительных реакций и электрохимических процессов. Законы Фарадея. Постоянная Фарадея.

Основы термодинамики. Предмет термодинамики и ее возможности. Энергия и ее виды. Механическая и внутренняя энергия. Теплота и работа – формы передачи энергии. Знаки элементарной теплоты и элементарной работы. Зависимость теплоты и работы от пути процесса. Условия передачи теплоты и совершения работы. Представление теплоты и работы через факторы интенсивности и емкости. Полезная работа и работа расширения. Химическое сродство. Энтропия. Энтропия и термодинамическая вероятность. Постулат Больцмана.

Первое начало термодинамики, его содержание и математическое выражение. Энтальпия. Тепловой эффект. Тепловой эффект при постоянном давлении и постоянном объеме. Теплоемкость. Теплоемкость при постоянном давлении и постоянном объеме. Зависимость энтальпии от температуры. Уравнение Кирхгофа. Удельная и молярная теплоемкости.

Второе начало термодинамики, его содержание. Фундаментальное уравнение термодинамики. Критерий самопроизвольного протекания процесса в изолированной и закрытой системах.

Функция Гиббса и ее дифференциал. Функция Гиббса как критерий самопроизвольного протекания реакции. Уравнение Гиббса и Гельмгольца и его виды. Физический смысл слагаемых в уравнении Гиббса и Гельмгольца.

Зависимость функции Гиббса от давления. Химический потенциал. Стандартный химический потенциал. Относительное парциальное давление. Стандартное состояние газа. Стандартные условия.

Химическая термодинамика. Применение термодинамики к химическим процессам. Изменение экстенсивного свойства в ходе реакции. Взаимосвязь изменений термодинамических функций в ходе реакции. Термохимические уравнения и их линейные преобразования.

Законы Лавуазье – Лапласа и Гесса. Расчет изменений термодинамических функций в ходе реакции их молярных значений этих функций и функций образования и сгорания. Энтальпии образования и энтальпии сгорания веществ. Следствия из закона Гесса. Применение значений энергетических эффектов фазовых превращений и средних энергий химической связи в термохимических расчетах. Экспериментальное определение тепловых эффектов калориметрическим методом. Условие теплового баланса.

Химическое сродство. Уравнение изотермы химической реакции. Термодинамическая константа химического равновесия. Уравнение изобары реакции. Зависимость константы равновесия от температуры. Выражение константы равновесия через парциальные давления и концентрации. Взаимосвязь констант химического равновесия. Предсказание направления процесса из уравнений изотермы и изобары реакции. Принцип динамического равновесия Ле Шателье. Расчет состава равновесной смеси из табличных значений термодинамических функций.

Термодинамика фазовых переходов. Зависимость давления пара от температуры. Энтропия фазового перехода. Зависимость энтропии вещества от температуры. Абсолютная энтропия вещества.

Растворы. Истинные и коллоидные растворы. Насыщенные и ненасыщенные растворы. Концентрированные и разбавленные растворы.

Растворение как физико-химический процесс. Растворимость веществ и ее температурная зависимость. Энтальпия растворения, энергия кристаллической решетки и энтальпия сольватации.

Коллигативные свойства растворов. Изотонический коэффициент, его связь со степенью диссоциации. Давление пара над раствором. Тоноскопический закон. Повышение точки кипения раствора. Эбулиоскопический закон. Понижение точки начала кристаллизации растворителя. Криоскопический закон. Осмос. Осмотическое давление. Применение коллигативных свойств для определения молярных масс веществ.

Химический потенциал растворенного вещества и растворителя. Несимметричная система стандартных состояний. Реальные газы и реальные растворы. Летучесть и активность. Объединенная система стандартных состояний.

Равновесие газ – жидкость. Закон Генри и его термодинамическое обоснование. Константа Генри. Коэффициент растворимости Оствальда. Коэффициент абсорбции Бунзена.

Равновесие жидкость – жидкость. Закон распределения Нернста и его термодинамическое обоснование. Коэффициент распределения. Исходный раствор, экстрагент, экстракт и рафинат. Коэффициент экстракции. Доля неэкстрагированного вещества. Однократная и многократная экстракция, их характеристические уравнения.

Равновесие твердое тело – жидкость. Диаграммы плавкости двухкомпонентных систем. Фигуративные точки и их значение. Диаграмма плавкости системы, образующей непрерывный ряд твердых растворов. Диаграммы плавкости эвтектического типа с полной взаимной нерастворимостью и ограниченной растворимостью компонентов в твердом состоянии. Диаграмма плавкости системы, компоненты которой образуют химическое соединение. Область гомогенности химического соединения. Применение правила фаз к анализу диаграмм плавкости. Расчет количеств равновесных фаз и частей системы. Кривые охлаждения как источник диаграмм плавкости.

Электролитическая диссоциация. Электролиты. Электролитическая диссоциация и ее термодинамическое описание. Константа и степень диссоциации. Сильные и слабые электролиты.

Основные идеи теорий кислот и оснований. Теория электролитической диссоциации Аррениуса, теория сольвосистем Франклина, протонная теория Бренстеда и Лоури, теория Усановича, теория жестких и мягких кислот и оснований Пирсона. Автопротолиз растворителя. Водородный показатель.

Кислотно-основное равновесие. Точный и приближенный расчет ионных равновесий. Ионные равновесия в растворах сильных кислот и оснований. Ионные равновесия в растворах слабых кислот и оснований. Закон разбавления Оствальда. Гидролиз. Способы усиления и подавления гидролиза. Ионные равновесия в растворах гидролизующихся солей. Константа и степень гидролиза. Буферные растворы. Ионные равновесия в буферных растворах.

Равновесие осаждения – растворения и его термодинамическое описание. Произведение растворимости. Условия выпадения и растворения осадка.

Равновесие комплексообразования. Комплексообразователь и лиганды. Координационное число. Общая и ступенчатые константы образования. Константа нестойкости.

Применение значений констант диссоциации, произведения растворимости и констант комплексообразования для предсказания возможности протекания ионных реакций.

Окислительно-восстановительные реакции. Окисление и восстановление. Окислитель и восстановитель. Важнейшие окислители и восстановители, продукты их химического превращения в различных средах. Расстановка коэффициентов в уравнениях реакций методами электронного баланса и полуреакций.

Электрохимия. Проводники первого и второго рода. Понятие электрода и электродной реакции. Классификация электродов. Электродный потенциал. Зависимость электродного потенциала от концентрации. Уравнение Нернста.

Электрохимическая ячейка. Гальванический элемент и его термодинамическое описание. ЭДС гальванического элемента. Определение термодинамических функций по электрохимическим данным. Электролиз. Напряжение разложения. Составление уравнений процессов электролиза. Практическое применение электролиза.

Химическая кинетика и катализ. Скорость химической реакции. Механизм реакции. Простые и сложные реакции.

Зависимость скорости реакции от концентрации реагентов. Закон действующих масс. Кинетическое уравнение. Константа скорости химической реакции. Порядок и молекулярность реакций. Кинетические кривые и их уравнения.

Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса. Температурный коэффициент скорости реакции. Энергия активации и ее физический смысл. Энергетическая диаграмма реакции. Предэкспоненциальный множитель. Частотный и пространственный факторы.

Катализ и катализаторы. Гомогенный и гетерогенный катализ. Ингибиторы. Промоторы. Примеры каталитических реакций.

Комплексные соединения. Основные понятия и определения. Комплексное соединение. Внешняя сфера. Внутренняя сфера. Комплексообразователь (центральный атом). Лиганды (адденды). Координационное число. Дентатность. Мостиковые лиганды. Кластеры.

Основные положения координационной теории А.Вернера. Главная и побочная валентности.

Классификация комплексных соединений. Классификация по заряду внутренней сферы. Нейтральные, катионные и анионные комплексы. Классификация по природе лиганда. Аквакомплексы, аммиакаты, гидроксикомплексы, ацидокомпексы, карбонилы, смешаннолигандные комплексы. Классификация по числу центральных атомов во внутренней сфере. Одноядерные и многоядерные комплексы. Особые группы комплексных соединений. Хелаты, двойные соли, изополисоединения, гетерополисоединения.

Изомерия комплексных соединений. Структурная изомерия. Междусферная изомерия (ионизационная, гидратная, молекулярная (сольватная) изомерия). Лигандная изомерия (изомерия лиганда, связевая (солевая) изомерия). Координационная изомерия (метамерия и полимерия). Пространственная изомерия (геометрическая и оптическая изомерия).

Номенклатура комплексных соединений. Тривиальная и систематическая номенклатура. Правила формирования названий катионных, нейтральных и анионных комплексов. Указание числа лигандов, природы лиганда и степени окисления центрального атома. Указание числа сложных лигандов. Указание на мостиковые лиганды и лиганды, координированные несколькими атомами. Составление систематических названий комплексных соединений.

Термодинамическая и кинетическая стабильность комплексов. Устойчивые и неустойчивые комплексы. Инертные и лабильные комплексы. Обсуждение термодинамической стабильности комплексов с позиций теории жестких и мягких кислот и оснований.

Природа химической связи в комплексных соединениях. Основные идеи метода валентных связей, теории кристаллического поля, метода молекулярных орбиталей и теории поля лигандов. Методологическое значение теории строения комплексных соединений.

Предсказание строения и свойств комплексных соединений с позиций метода валентных связей. Определение электронной конфигурации центрального атома. Внешнеорбитальные и внутриорбитальные комплексы. Высокоспиноовые и низкоспиновые комплексы. Роль природы лиганда в образовании внешнеорбитальных и внутриорбитальных комплексов. Предсказание кинетической устойчивости комплексов. Отнесение комплексного соединения к внешнеорбитальным и внутриорбитальным комплексам. Предсказание координационного числа, типа гибридизации и геометрической формы комплекса и его магнитных свойств.

Предсказание строения и свойств комплексных соединений с позиций теории кристаллического поля. Предсказание относительного расположения орбиталей центрального атома в поле лигандов октаэдрической, тетраэдрической и плоскоквадратной симметрии. Параметр расщепления. Спектрохимический ряд. Оценка величины расщепления d- подуровня центрального атома. Заполнение расщепленного уровня электронами в случае лигандов сильного и слабого поля. Предсказание окраски комплексного соединения из значения параметра расщепления. Предсказание поведения комплекса в магнитном поле. Энергия стабилизации кристаллическим полем (ЭСКП). Расчет ЭСКП для октаэдрических и тетраэдрических комплексов, образованных лигандами сильного и слабого поля. Предсказание кинетической устойчивости комплексов с позиций теории кристаллического поля.

Хелатные комплексы. Хелатный эффект. Правило циклов. Примеры хелатообразующих лигандов. Внутрикомплексные соединения.

π-Комплексы. Образование координационной связи в π-комплексах. Примеры π-комплексов. π-Дативное взаимодействие на примере ферроцена и бис-(бензол)хрома.

Химические реакции с участием комплексных соединений. Реакции перемещения лигандов между внешней и внутренней сферами. Диссоциация комплексных соединений по внешней и внутренней сферам. Ступенчатые и общие (полные) константы образования. Константа нестойкости. Расчет ионных равновесий в растворах комплексных соединений. Реакции замещения лиганда. Диссоциативный и ассоциативный механизмы замещения. Представление процессов диссоциации комплекса как процессов замещения лигандов молекулами воды. Стереохимия процессов замещения в квадратных и октаэдрических комплексах. Явление транс-влияния. Ряд транс-влияния. Предсказание строения продуктов замещения с позиций представлений о транс-влиянии. Перераспределение лигандов и образование смешанных комплексов. Внутримолекулярные превращения комплексного соединения. Химические превращения координированных лигандов. Протонирование и депротонирование лиганда. Гидроксоляция и ее последствия. Преодоление гидроксоляции в кислых и щелочных средах. Изомеризация лигандов. Реакции присоединения, внедрения и конденсации с органическим координированным лигандом. Металлокомплексный катализ. Окислительно-восстановительные превращения центрального атома. Влияние природы лиганда на значения окислительно-восстановительных потенциалов превращений центрального атома.

Значение комплексных соединений в природе, технологии, сельском хозяйстве, медицине.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-24

А также с техническими науками - химической технологией (её неорганической частью), металлургией - и агрохимией . В Неорганическая химия постоянно применяются теоретические представления и экспериментальные методы физики.

Историческая справка . История Неорганическая химия особенно до середины 19 в., тесно переплетается с общей историей химических знаний. Важнейшие достижения химии конца 18 - начала 19 вв. (создание кислородной теории горения, химической атомистики, открытие основных стехиометрических законов) явились результатами изучения неорганических веществ.

Уже в глубокой древности были известны металлы, которые либо встречаются в природе в самородном состоянии ( , , , ), либо легко получаются (Cu, , ) нагреванием их окисленных руд с углем, а также некоторые неметаллы (углерод в виде угля и алмаза, , возможно ). За 3-2 тыс. лет до н. э. в Египте, Индии, Китае и др. странах умели получать железо из руд, изготовлять изделия из стекла.

Стремление превратить неблагородные, «несовершенные» металлы в благородные, «совершенные» ( и ) явилось причиной возникновения алхимии , господствовавшей в 4-16 вв. н. э. Алхимики создали аппаратуру для химических операций (выпаривания, кристаллизации, фильтрования, перегонки, возгонки), которые и в наше время служат для разделения и очистки веществ; впервые получили некоторые простые вещества (As, , Р), соляную, серную и азотную кислоты, многие соли (купоросы, квасцы, нашатырь) и др. неорганические вещества. В 16 в. металлургия, керамика, стеклоделие и др. производства, близко соприкасающиеся с Неорганическая химия получили довольно широкое развитие, что видно из трудов В. Бирингуччо (1540) и Г. Агриколы (1556). В 1530-х гг. А. Т. Парацельс , которому были на опыте известны целебные свойства препаратов , , , , , положил начало ятрохимии - применению химии в медицине. В 17 в. укоренилось деление веществ, изучаемых химией, на минеральные, растительные и животные (указанное в 10 в. арабским учёным ар-Рази), т. е. наметилось расчленение химии на неорганическую и органическую. В 1661 Р. Бойль опроверг учения о четырёх стихиях и трёх началах, из которых якобы состоят все тела, и определил химические элементы как вещества, не могущие быть разложенными на другие. В конце 17 в. Г. Шталь , развивая представления И. Бехера , высказал гипотезу, согласно которой при обжигании и горении тела теряют начало горючести - флогистон . Эта гипотеза господствовала вплоть до конца 18 в.

В дальнейшем становлению Неорганическая химия как науки послужили работы М. В. Ломоносова и А. Лавуазье . Ломоносов сформулировал закон сохранения вещества и движения (1748), определил химию как науку об изменениях, происходящих в сложных веществах, приложил атомистические представления к объяснению химических явлений, предложил (1752) деление веществ на органические и неорганические, показал, что увеличение веса металлов при обжигании происходит за счёт присоединения некоторой части воздуха (1756), Лавуазье опроверг гипотезу флогистона, показал роль кислорода в процессах обжигания и горения, конкретизировал понятие химического элемента, создал первую рациональную номенклатуру химическую (1787). В начале 19 в. Дж. Дальтон ввёл в химию атомизм, открыл кратных отношений закон и дал первую таблицу атомных весов химических элементов. Тогда же были открыты Гей-Люссака законы (1805-08), постоянства состава закон (Ж. Пруст , 1808) и Авогадро закон (1811). В 1-й половине 19 в. И. Берцелиус окончательно утвердил атомизм в химии. В середине 19 в. были сформулированы и разграничены понятия атома, молекулы и эквивалента (Ш. Жерар , С. Канниццаро ). К тому времени было известно свыше 60 химических элементов. Проблему их рациональной классификации разрешило открытие в 1869 периодического закона Менделеева и построение периодической системы элементов Менделеева. На основе своих открытий Д. И. Менделеев исправил атомные веса многих элементов и предсказал атомные веса и свойства ещё неизвестных тогда элементов - , , и др. После их открытия периодический закон получил всеобщее признание и стал прочной научной основой химии.

В конце 19 - начале 20 вв. особое внимание химиков-неоргаников привлекли две малоизведанные области - металлические сплавы и комплексные соединения . Исследование полированной и протравленной поверхности стали при помощи микроскопа, начатое в 1831 П. П. Аносовым , было продолжено Г. К. Сорби (1863), Д. К. Черновым (1868), немецким учёным А. Мартенсом (с 1878). Оно было усовершенствовано, а также существенно дополнено методом термического анализа (А. Ле Шателье , Ф. Осмондом - в 1887, английским учёным У. Робертс-Остоном - в 1899). В дальнейшем крупнейшие работы по исследованию сплавов с применением новой методики были выполнены Н. С. Курнаковым (с 1899), А. А. Байковым (с 1900) и их научными школами. Обширные исследования сплавов были проведены в Германии Г. Тамманом (с 1903) и его учениками. Теоретическую основу учения о сплавах дало правило фаз Дж. У. Гиббса . Систематические исследования комплексных соединений, предпринятые в 1860-х гг. К. Бломстрандом и датским учёным С. Йёргенсеном, были в 1890-гг. развиты А. Вернером , создавшим координационную теорию, и Н. С. Курнаковым. Особенно широко работы в этой области были поставлены в России и СССР Л. А. Чугаевым и его школой.

На рубеже 19 и 20 вв. в истории Неорганическая химия произошло крупное событие - были открыты инертные газы : (Дж. Рэлей , У. Рамзай , 1894), Не (У. Рамзай, 1895), , , (английские учёные У. Рамзай и М. Траверс, 1898), (немецкий учёный Ф. Дорн, 1900), которые Д. И. Менделеев по предложению У. Рамзая включил в особую (нулевую) группу своей периодической системы элементов (впоследствии были включены в 8-ю группу). Ещё более значительным было открытие самопроизвольной радиоактивности урана (А. Беккерель , 1896) и тория (М. Склодовская-Кюри и независимо немецкий учёный Г. Шмидт, 1898), за которым последовало открытие радиоактивных элементов и (М. Склодовская-Кюри, П. Кюри , 1898). Эти открытия привели к обнаружению существования изотопов , к созданию радиохимии и теории строения атома (Э. Резерфорд , 1911, Н. Бор , 1913, и др.; см. Атомная физика ).

Успехи ядерной физики позволили синтезировать трансурановые элементы, имеющие атомные номера от 93 по 105 (см. Актиноиды , Элементы химические , Ядерная химия ). Работы по синтезу трансурановых элементов открыли новую эпоху в истории Неорганическая химия Исследования в этой области ведутся в СССР, США, Франции, ФРГ и некоторых др. странах.

Методы исследования . В Неорганическая химия применяются два основных приёма исследования: препаративный метод и метод физико-химического анализа . Препаративный метод практиковался с древнейших времён. Его основу составляют проведение реакций между исходными веществами и разделение образующихся продуктов посредством перегонки, возгонки, кристаллизации, фильтрования и др. операций. Особенно распространён препаративный метод в химии комплексных соединений. Метод физико-химического анализа в основном создан Н. С. Курнаковым, его учениками и последователями. Сущность метода заключается в измерении различных физических свойств (температур начала и конца кристаллизации, а также электропроводности, твёрдости и др.) систем из 2, 3 или многих компонентов. Полученные данные изображают в виде диаграмм состав-свойство. Их геометрический анализ позволяет судить о составе и природе образующихся в системе продуктов, не выделяя и не анализируя их. Физико-химический анализ указывает пути синтеза веществ, даёт научную основу процессов переработки руд, получения солей, металлов, сплавов и др. важных технических материалов. Физико-химический анализ признан во всём мире ведущим методом Неорганическая химия

Для современной Неорганическая химия характерен необычайно обширный круг новых методов исследования строения и свойств веществ и материалов. С середины 20 в. основное внимание уделяется изучению атомного и молекулярного строения неорганических соединений прямым определением их структуры (т. е. взаимного расположения атомов в молекуле). Оно производится методами кристаллохимии, спектроскопии , рентгеновского структурного анализа , ядерного магнитного резонанса , ядерного квадрупольного резонанса , гамма-спектроскопии , электронного парамагнитного резонанса и др. Большое значение имеет определение важных для техники свойств и особенностей (механические, магнитные, электрические и оптические свойства, жаропрочность, жаростойкость, отношение к радиоактивному облучению и др.). Неорганическая химия превратилась в такую науку о неорганических материалах, которая основывается преимущественно на данных о строении веществ на атомном и молекулярном уровнях.

Успехи неорганической химии. Открытие трансурановых элементов, эффективное разделение (посредством хроматографии , экстрагирования и др.) редкоземельных и иных трудно разделимых элементов (например, платиновых металлов) на индивидуально-чистые, экономичное получение редких элементов и материалов из них с особыми свойствами или заданным комплексом свойств привели к качественным изменениям в Неорганическая химия Необходимо также отметить прогресс в технологии получения высокочистых элементов и соединений; получение из них и применение монокристаллов с определёнными свойствами (например, пьезоэлектриков, диэлектриков , полупроводников , сверхпроводников , кристаллов для лазеров и др.) составило специальную ветвь промышленности. Особенно быстро развивается химия редких элементов. В 60-е годы возникла химия инертных газов, которые ранее считались неспособными к химическому взаимодействию; получены многие соединения , и с фтором, окислы и др.

В современной Неорганическая химия очень большое внимание уделяется изучению химической связи - важнейшей характеристике любого химического соединения. С помощью физической аппаратуры удаётся как бы «видеть» химическую связь. Методы кристаллографии , порой весьма трудоёмкие, заменяются скоростными методами (с применением, например, автоматических дифрактометров в сочетании с ЭВМ). Это позволяет для неорганических соединений быстро определять межатомные расстояния (и оценить электронную плотность), на основании чего можно составить более полное представление о строении молекул и рассчитать их свойства. Ещё более подробные сведения о химической связи можно получить с помощью рентгеноэлектронной спектроскопии. Разработка новых физических методов и интерпретация получаемых результатов требуют совместной работы химиков-неоргаников, физиков и математиков. На основе представлений и методов квантовой механики всё более успешно рассматриваются проблемы строения и реакционной способности химических соединений и вопросы химической связи (см. Валентность , Квантовая химия ).

Неорганические вещества и материалы используются в различных рабочих условиях, при интенсивном воздействии среды (газов, жидкостей), механических нагрузок и др. факторов. Поэтому важное значение имеет изучение кинетики неорганических реакций, в частности при разработке новых технологий и материалов (см. Кинетика химическая , Макрокинетика ).

Практические применения. Неорганическая химия даёт новые виды горючего для авиации и космических ракет, вещества, препятствующие обледенению самолётов, а также посадочных полос на аэродромах. Она создаёт новые твёрдые и сверхтвёрдые материалы для абразивных и режущих инструментов. Так, использование в них компактного кубического бора нитрида (боразона) позволяет обрабатывать очень твёрдые сплавы при таких высоких температурах и скоростях, при которых алмазные резцы сгорают. Получены новые составы флюсов для сварки металлов; новые комплексные соединения, применяемые в технологии, сельском хозяйстве и медицине; новые строительные материалы, в том числе значительно облегчённые (например, на основе или с участием фосфатов), новые полупроводниковые и лазерные материалы, жаропрочные металлические сплавы, новые минеральные удобрения и многое другое. Неорганическая химия удовлетворяет самые разнообразные запросы практики, весьма бурно развивается и принадлежит к важнейшим основам научно-технического прогресса.

Научные учреждения, общественные организации, периодические издания. До 1917 исследования по Неорганическая химия велись в России лишь в лабораториях АН и вузов (горного, политехнического и электротехнического институтов в Петербурге, университетов в Петербурге, Москве, Казани, Киеве, Одессе). В 1918 начали свою деятельность основанные при АН в Петрограде институт физико-химического анализа (основатель Н. С. Курнаков) и институт по изучению платины и др. благородных металлов (основатель Л. А. Чугаев). В 1934 оба эти института и Лаборатория общей химии АН СССР объединены в институт общей и неорганической химии АН СССР (в 1944 ему присвоено имя Н. С. Курнакова). О др. институтах см. . Проблемы Неорганическая химия рассматриваются на конгрессах Международного союза теоретической и прикладной химии , который имеет секцию Неорганическая химия и на съездах национальных химических обществ, в том числе Химического общества имени Д. И. Менделеева.

Работы по Неорганическая химия в 18-19 вв. публиковались (и продолжают публиковаться) в химических журналах, а также в изданиях национальной АН, университетов, высших технических школ и научно-исследовательских институтов. В связи с быстрым развитием Неорганическая химия в 1892 в Германии был основан «Zeitschrift fur anorganische (с 1915 «... und allgemeine») Chemie». С 1962 в США выходит журнал «Inorganic Chemistry». В СССР работы по Неорганическая химия печатались в основанных в 1919 «Известиях Института (с 1935 - Сектора) физико-химического анализа» и «Известиях Института (с 1935 - Сектора) по изучению платины и других благородных металлов». В 1956 оба издания объединены в «Журнал неорганической химии».

Лит.: Классические работы. Менделеев Д. И., Основы химии, 13 изд., т. 1-2, М. - Л., 1947; Lavoisier A. L., Traité élémentaire de chimie, t. 1-2, ., 1789; Berzelius J. J., Lehrbuch der Chemie, 5 Aufl., Bd 1-5, Lpz., 1847-56.

История. Джуа М., История химии, пер. с итал., М., 1966; Фигуровский Н. А., Очерк общей истории химии. От древнейших времен до начала XIX в., М., 1969; Кузнецов В. И., Эволюция представлений об основных законах химии, М., 1967; Соловьев Ю. И., Эволюция основных теоретических проблем химии, М., 1971; Развитие общей, неорганической и аналитической химии в СССР, под ред. Н. М. Жаворонкова, М., 1967; Тананаев И. В., Основные достижения неорганической химии за 50 лет Советской власти, «Журнал Всесоюзного химического общества им. Д. И. Менделеева». 1967, т. 12, № 5; Фигуровский Н. А., Открытие химических элементов и происхождение их названий, М., 1970; Partington J. R., A history of chemistry, v. 1, pt 1, L., 1970; v. 2-4, L. 1961-64.

Справочники. Gmelin L., Handbuch der anorganischen Chemie, 8 Aufl., Syst.- Num. 1-70, В., 1924 (изд. продолжается); Mellor J. ., A comprehensive treatise on inorganic and theoretical chemistry, v. 1-16, L., 1952-34; Pascal ., Nouveau traité de chimie minérale, t. 1-19, ., 1956-1963.

Руководства и пособия для высшей школы. Некрасов Б. В., Основы общей химии, т. 1-2, М., 1974; Реми Г., Курс неорганической химии, пер. с нем., т. 1-2, М., 1963-66; Щукарев С. А., Лекции по общему курсу химии, т. 1-2, Л., 1962-64; Полинг Л., Общая химия, пер. с англ., М., 1974; Барнард А., Теоретические основы неорганической химии, пер. с англ., М., 1968; Дей М., Селбин Д., Теоретическая неорганическая химия, пер. с англ., 2 изд., М., 1971; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., ч. 1-2, М., 1969.

Монографии и сборники работ. Руководство по препаративной неорганической химии, под ред. Г. Брауера, пер. с нем., М., 1956; Физические методы исследования и свойства неорганических соединений, пер. с англ., М., 1970; Курнаков Н. С., Введение в физико-химический анализ, 4 изд., М. - Л., 1940; его же, Избр. труды, т. 1-3, М., 1960-63; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. - Л., 1947; Гринберг А. А., Введение в химию комплексных соединений, 3 изд., М. - Л., 1966; Вдовенко В. М., Современная радиохимия, М., 1969. См. также лит. при статьях, ссылки на которые даны в тексте.

И. В. Тананаев, С. А. Погодин.

Статья про слово "Неорганическая химия " в Большой Советской Энциклопедии была прочитана 7161 раз

Курс неорганической химии содержит множество специальных терминов, необходимых для проведения количественных вычислений. Рассмотрим подробно некоторые из ее основных разделов.

Особенности

Неорганическая химия была создана с целью определения характеристики веществ, имеющих минеральное происхождение.

Среди основных разделов данной науки выделяют:

  • анализ строения, физических и химических свойств;
  • взаимосвязь между строением и реакционной способностью;
  • создание новых методов синтеза веществ;
  • разработку технологий очистки смесей;
  • методы изготовления материалов неорганического вида.

Классификация

Неорганическая химия подразделяется на несколько разделов, занимающихся изучением определенных фрагментов:

  • химических элементов;
  • классов неорганических веществ;
  • полупроводниковых веществ;
  • определенных (переходных) соединений.

Взаимосвязь

Неорганическая химия взаимосвязана с физической и аналитической химией, которые обладают мощным набором инструментов, позволяющих проводить математические вычисления. Теоретический материал, рассматриваемый в данном разделе, применяют в радиохимии, геохимии, агрохимии, а также в ядерной химии.

Неорганическая химия в прикладном варианте связана с металлургией, химической технологией, электроникой, добычей и переработкой полезных ископаемых, конструкционных и строительных материалов, очисткой промышленных стоков.

История развития

Общая и неорганическая химия развивалась вместе с человеческой цивилизацией, потому включает в себя несколько самостоятельных разделов. В начале девятнадцатого века Берцелиусом была опубликована таблица атомных масс. Именно этот период стал началом развития данной науки.

В качестве основы неорганической химии выступили исследования Авогадро и Гей-Люссака, касающиеся характеристик газов и жидкостей. Гессу удалось вывести математическую связь между количеством теплоты и агрегатным состоянием вещества, что существенно расширило горизонты неорганической химии. Например, появилась атомно-молекулярная теория, которая ответила на множество вопросов.

В начале девятнадцатого века Дэви сумел разложить электрохимическим способом гидроксиды натрия и калия, открыв новые возможности для получения простых веществ путем электролиза. Фарадей, основываясь на работе Дэви, вывел законы электрохимии.

Со второй половины девятнадцатого века курс неорганической химии существенно расширился. Открытия Вант-Гоффа, Аррениуса, Освальда внесли новые веяния в теорию растворов. Именно в этот временной период был сформулирован закон действующих масс, позволивший проводить различные качественные и количественные вычисления.

Учение о валентности, созданное Вюрцом и Кекуле, позволило найти ответы на многие вопросы неорганической химии, связанные с существованием разных форм оксидов, гидроксидов. В конце девятнадцатого века были открыты новые химические элементы: рутений, алюминий, литий: ванадий, торий, лантан, и др. Это стало возможным после введения в практику методики спектрального анализа. Инновации, появившиеся в тот период в науке, не только объяснили химические реакции в неорганической химии, но и позволили предсказывать свойства получаемых продуктов, области их применения.

К концу девятнадцатого века было известно о существовании 63 различных элементов, а также появились сведения о разнообразных химических веществах. Но из-за отсутствия их полной научной классификации, можно было решать далеко не все задачи по неорганической химии.

Закон Менделеева

Периодический закон, созданный Дмитрием Ивановичем, стал базой для систематизации всех элементов. Благодаря открытию Менделеева, химикам удалось скорректировать представления об атомных массах элементов, предсказать свойства тех веществ, которые еще не были открыты. Теория Мозли, Резерфорда, Бора, придала физическое обоснование периодическому закону Менделеева.

Неорганическая и теоретическая химия

Для того чтобы понять, что изучает химия, нужно рассмотреть основные понятия, включенные в этот курс.

Основным теоретическим вопросом, изучаемым в данном разделе, является периодический закон Менделеева. Неорганическая химия в таблицах, представленная в школьном курсе, знакомит юных исследователей с основными классами неорганических веществ, их взаимосвязью. Теория химической связи рассматривает природу связи, ее длину, энергию, полярность. Метод молекулярных орбиталей, валентных связей, теория кристаллического поля - основные вопросы, позволяющие объяснять особенности строения и свойств неорганических веществ.

Химическая термодинамика и кинетика, отвечающие на вопросы, касающиеся изменения энергии системы, описание электронных конфигураций ионов и атомов, их превращение в сложные вещества, базирующиеся на теории сверхпроводимости, дали начало новому разделу - химии полупроводниковых материалов.

Прикладной характер

Неорганическая химия для чайников предполагает использование теоретических вопросов в промышленности. Именно этот раздел химии стал основой для разнообразных производств, связанных с производством аммиака, серной кислоты, углекислого газа, минеральных удобрений, металлов и сплавов. С помощью химических методов в машиностроении получают сплавы с заданными свойствами и характеристиками.

Предмет и задачи

Что изучает химия? Это наука о веществах, их превращениях, а также областях применения. На данный временной промежуток есть достоверные сведения о существовании порядка ста тысяч разнообразных неорганических соединений. При химических превращениях происходит изменение состава молекул, образуются вещества с новыми свойствами.

Если изучается неорганическая химия с нуля, необходимо сначала познакомиться с ее теоретическими разделами, и только после этого можно приступать к практическому использованию полученных знаний. Среди многочисленных вопросов, рассматриваемых в этом разделе химической науки, необходимо упомянуть атомно-молекулярное учение.

Молекула в нем рассматривается в качестве наименьшей частицы вещества, обладающей его химическими свойствами. Она делимы до атомов, являющихся самыми небольшими частицами вещества. Молекулы и атомы находятся в постоянном движении, для них характерны электростатические силы отталкивания и притяжения.

Неорганическая химия с нуля должна базироваться на определении химического элемента. Под ним принято подразумевать вид атомов, имеющих определенный ядерный заряд, строение электронных оболочек. В зависимости от строения, они способны вступать в разнообразные взаимодействия, образуя вещества. Любя молекула является электрически нейтральной системой, то есть, в полной мере подчиняется всем законам, существующим в микросистемах.

Для каждого элемента, существующего в природе, можно определить количество протонов, электронов, нейтронов. В качестве примера приведем натрий. Число протонов в его ядре соответствует порядковому номеру, то есть, 11, и равно числу электронов. Для вычисления числа нейтронов, необходимо вычесть из относительной атомной массы натрия (23) его порядковый номер, получим 12. Для некоторых элементов были выявлены изотопы, отличающиеся по количеству нейтронов в атомном ядре.

Составление формул по валентности

Чем еще характеризуется неорганическая химия? Темы, рассматриваемые в этом разделе, предполагают составление формул веществ, проведение количественных вычислений.

Для начала проанализируем особенности составления формул по валентности. В зависимости от того, какие элементы будут включены в состав вещества, существуют определенные правила определения валентности. Начнем с составления бинарных соединений. Данный вопрос рассматривается в школьном курсе неорганической химии.

У металлов, располагающихся в главных подгруппах таблицы Менделеева, показатель валентности соответствует номеру группы, является постоянной величиной. Металлы, находящиеся в побочных подгруппах, могут проявлять различные валентности.

Есть некоторые особенности в определении валентности у неметаллов. Если в соединении он располагается в конце формулы, то проявляет низшую валентность. При ее вычислении, из восьми вычитают номер группы, в которой располагается этот элемент. Например, в оксидах, кислорода проявляет валентность два.

Если же неметалл располагается в начале формулы, он демонстрирует максимальную валентность, равную номеру его группы.

Как составить формулу вещества? Есть определенный алгоритм, которым владеют даже школьники. Сначала необходимо записать знаки элементов, упоминаемых в названии соединения. Тот элемент, который в наименовании указывается последним, в формуле располагают на первом месте. Далее над каждым из них ставят, пользуясь правилами, показатель валентности. Между значениями определяют наименьшее общее кратное. При его делении на валентности, получают индексы, располагаемые под знаками элементов.

Приведем в качестве примера вариант составления формулы оксида углерода (4). Сначала располагаем рядом знаки углерода и кислорода, входящие в состав данного неорганического соединения, получаем СО. Поскольку первый элемент имеет переменную валентность, она указана в скобках, у кислорода ее считают, вычитая из восьми шесть (номер группы), получают два. Конечная формула предложенного оксида будет иметь вид СО 2 .

Среди многочисленных научных терминов, используемых в неорганической химии, особый интерес представляет аллотропия. Она поясняет существование нескольких простых веществ, имеющих в основе один химический элемент, отличающийся между собой по свойствам и строению.

Классы неорганических веществ

Существует четыре основных класса неорганических веществ, заслуживающих детального рассмотрения. Начнем с краткой характеристики оксидов. Данный класс предполагает бинарные соединения, в которых обязательно присутствует кислород. В зависимости от того, какой элемент начинает формулу, существует их подразделение на три группы: основные, кислотные, амфотерные.

Металлы, имеющие валентность больше четырех, а также все неметаллы, образуют с кислородом кислотные оксиды. Среди их основных химических свойств, отметим способность взаимодействовать с водой (исключением является оксид кремния), реакции с основными оксидами, щелочами.

Металлы, валентность которых не превышает двух, образуют основные оксиды. Среди основных химических свойств данного подвида, выделим образование щелочей с водой, солей с кислотными оксидами и кислотами.

Для переходных металлов (цинка, бериллия, алюминия) характерно образование амфотерных соединений. Их основным отличием является двойственность свойств: реакции со щелочами и кислотами.

Основаниями называют масштабный класс неорганических соединений, имеющих схожее строение и свойства. В молекулах таких соединений содержится одна либо несколько гидроксильных групп. Сам термин был применен к тем веществам, которые в результате взаимодействия образуют соли. Щелочами называют основания, имеющие щелочную среду. К ним относят гидроксиды первой и второй групп главных подгрупп таблицы Менделеева.

В кислых солях, помимо металла и остатка от кислоты, есть катионы водорода. Например, гидрокарбонат натрия (пищевая сода) является востребованным соединением в кондитерской промышленности. В основных солях вместо катионов водорода находятся гидроксид-ионы. Двойные соли это составная часть многих природных минералов. Так, хлорид натрия, калия (сильвинит) находится в земной коре. Именно это соединение в промышленности используют для выделения щелочных металлов.

В неорганической химии существует специальный раздел, занимающийся изучением комплексных солей. Эти соединения активно участвуют в обменных процессах, происходящих в живых организмах.

Термохимия

Данный раздел предполагает рассмотрение всех химических превращений с точки зрения потери либо приобретения энергии. Гессу удалось установить зависимость между энтальпией, энтропией, и вывести закон, объясняющий изменение температуры для любой реакции. Тепловой эффект, характеризующий количество выделяемой либо поглощаемой энергии в данной реакции, определяется как разность суммы энтальпий продуктов реакций и исходных веществ, взятых с учетом стереохимических коэффициентов. Закон Гесса является основным в термохимии, позволяет проводить количественные расчеты для каждого химического превращения.

Коллоидная химия

Только в двадцатом веке данный раздел химии стал отдельной наукой, занимающейся рассмотрением разнообразных жидких, твердых, газообразных систем. Суспензии, взвеси, эмульсии, отличающиеся по размерам частиц, химических параметрам, подробно изучаются в коллоидной химии. Результаты многочисленных исследований активно внедряются в фармацевтической, медицинской, химической промышленности, дают возможность ученым и инженерам синтезировать вещества с заданными химическими и физическими характеристиками.

Заключение

Неорганическая химия в настоящее время является одним из самых больших разделов химии, содержит огромное количество теоретических и практических вопросов, позволяющих получать представления о составе веществ, их физических свойствах, химических превращениях, основных отраслях применения. При владении основными терминами, законами, можно составлять уравнения химических реакций, осуществлять по ним разнообразные математические вычисления. Все разделы неорганической химии, связанные с составлением формул, записью уравнений реакций, решением задач на растворы предлагаются ребятам на выпускном экзамене.

Неорганическая химия изучает химические элементы, их простые и сложные вещества (кроме органических соединений углерода), а также закономерности превращения этих веществ. На данный момент в мире насчитывается около 400000 неорганических веществ.

Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения Цианаты аммония (NH4OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Велер, стираются границы между веществами неживой и живой природы, поскольку живые существа производят много неорганических веществ, а почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и нужным как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами. Теоретическим фундаментом неорганической химии является периодический закон и основанная на нем периодическая система химических элементов.

В тексте лекций нашли отражение современные представления о строении веществ и их свойства. Особое внимание уделено установлению связей между строением веществ и их преобразованиями в неорганических системах для различных элементов периодической системы. В конспекте лекций сначала рассматривается химия водорода и р-элементов главных подгрупп VII – III групп периодической системы Д.И. Менделеева, затем приводится общая характеристика металлов и рассматриваются s-элементы ИА и ПА групп, дальше – свойства переходных d- и f-элементов. Завершается конспект лекций описанием химических свойств инертных газов.

Каждый раздел начинается с общей характеристики подгруппы – анализа электронной конфигурации, возможных степеней окисления и выявление общих закономерностей в изменении окислительно-восстановительных и кислотно-основных свойств соединений, затем приводится характеристика простых веществ, соединений элементов данной группы. Подробная внимание уделяется использованию веществ (которое систематизированы подано по отраслям промышленности); биологической роли и токсикологии. Заканчивается каждый раздел перечнем контрольных вопросов для самопроверки, которые помогают студентам систематизировать и обобщить полученные знания.