Переход возбуждения с нервного волокна на иннервируемую им клетку- нервную, мышечную, секреторную- осуществляется при участии синапсов.

Синапсы - (от греч. synapsis- соединение, связь)- особый тип прерывистых контактов между клетками, приспособленных для односторонней передачи возбуждения или торможения от одного элемента к другому. Делят их в зависимости от локализации (центральные и периферические), функции (возбуждающие и тормозные),способа передачи возбуждения (химические, электрические, смешанные), природы действующего агента (холинергические или адренергические).

Синапсы могут быть между двумя нейронами (межнейронные), между нейроном и мышечным волокном (нервно-мышечные), между рецепторными образованиями и отростками чувствительных нейронов(рецепторно-нейронные), между отростком нейрона и другими клетками (железистыми, ресничными)

Основными компонентами синапса являются: пресинаптическая часть (обычно утолщенное окончание пресинаптического аксона), постсинаптическая часть (участок клетки, к которому подходит пресинаптическое окончание) и разделяющая их синаптическая щель (в синапсах с электрической передачей она отсутствует)

В простейшем типе синапса клетка иннервируется только одним волокном (аксоном). Так, в нервно-мышечном синапсе каждое мышечное волокно иннервируется аксоном одного двигательного нейрона. В сложных синапсах, например у клеток головного мозга, количество оканчивающихся аксонов может исчисляться несколькими тысячами.

Скелетные мышцы иннервируются волокнами соматической нервной системы, т.е. отростками нервных клеток (мотонейронов). расположенных в рогах спинного мозга или ядрах черепных нервов. Каждое двигательное волокно в мышце ветвится и иннервирует группу мышечных волокон. Концевые веточки нервных волокон (диаметром 1-1,5 мкм) лишены миелиновой оболочки, покрыты аксоплазматической мембраной с утолщениями и имеют расширенную колбовидную форму. Пресинаптическое окончание содержит митохондрии (поставщики АТФ), а также множество субмикроскопических образований – синаптических пузырьков (везикул) диаметром около 50 нм. Пузырьки более многочисленны в области утолщений пресинаптической мембраны.

Пресинаптические окончания аксона образуют синаптические соединения со специализированной областью мышечной мембраны (см. рис. 18). Последняя формирует углубления, складки, увеличивающие площадь поверхности постсинаптической мембраны и соответствующие утолщениям пресинаптической мембраны. Ширина синаптической щели составляет 50-100нм.

Область мышечного волокна, участвующую в образовании синапса, т.е. постсинаптическую часть контакта, называют концевой двигательной пластинкой или обозначают весь нервно-мышечный синапс.

Описанная электронно-микроскопическая картина является типичной для синапсов химической природы. Передатчиком возбуждения здесь служит посредник (медиатор)- ацетилхолин. Когда под действием нервного импульса (потенциала действия) происходит деполяризация мембраны нервного окончания, синаптические пузырьки вплотную сливаются с ней и их содержимое выбрасывается в синаптическую щель. Этому способствует повышение внутри окончания концентрации ионов кальция, поступающих извне по электровозбудимым кальциевым каналам.

Ацетилхолин выбрасывается порциями (квантами) по 4*10 молекул, что соответствует содержимому нескольких пузырьков. Один нервный импульс вызывает синхронное выделение 100-200 порций медиатора менее чем за 1 мс. Всего же запасов ацетил холина в окончании хватает на 2500-5000 импульсов. Таим образом, основное назначение пресинаптической части контакта состоит в регулируемом нервным импульсом выбросе медиатора ацетилхолина в синаптическую щель. Нервно-мышечный синапс является, холинэнергическим. Токсин ботулизма в следовых количествах блокирует освобождение ацетилхолина в синапсах и вызывает мышечный паралич.

Молекулы ацетилхолина диффундируют через щель и достигают внешней стороны постсинаптической мембраны, где связываются со специфическими рецепторами- молекулами липопротеиновой природы. Число рецепторов составляет примерно 13000 на 1 мкм;они отсутствуют в других участках мышечной мембраны. Взаимодействие медиатора с рецепторным белком (двух молекул ацетилхолина с одной молекулой рецептора) вызывает изменение конформации последнего и "открытие ворот" хемовозбудимых ионных каналов. В результате происходит перемещение ионов и деполяризация постсинаптической мембраны от -75до-10 мВ. Возникает потенциал концевой пластинки (ПКП), или возбуждающий постсинаптический потенциал (ВПСП). Последний термин применим ко всем типам химических синапсов, в том числе межнейронным.

Время от момента появления нервного импульса в пресинаптическом окончании до возникновения ПКП называется синаптической задержкой. Она составляет 0,2-0,5 мс.

Поскольку хемовозбудимые каналы не обладают электровозбудимостью, "запальная" деполяризация мембраны не вызывает дальнейшего увеличения числа активируемых каналов, как это имеет место в аксоплазматической мембране. Величина ПКП зависит от числа молекул ацетилхолина, связанных постсинаптической мембраной, т.е. в отличие от потенциала действия ПКП градуален. Амплитуда его зависит и от сопротивления мышечной мембраны (тонкие мышечные волокна имеют более высокий ПКП). Некоторые вещества, например яд кураре, связываясь с рецепторными белками, препятствуют действию ацетилхолина и подавляют ПКП. Известно, что на каждый импульс от мотонейрона в мышце всегда возникает потанцеал действия. Это обусловлено тем, что пресинаптическое окончание выделяет определенное количество квантов медиатора и ПКП всегда достигает пороговой величины.

Между деполяризованной ацетилхолином постсинаптической мембраной и граничащей с ней мембраной скелетного мышечного волокна возникают местные токи, вызывающие потенциалы действия, распространяющиеся по всему мышечному волокну. Последовательность событий, ведущих к возникновению потенциала действия, изображена на рисунке 19. Для восстановления возбудимости постсинаптической мембраны необходимо исключение деполяризующего агента- ацетилхолина. Эту функцию выполняет локализованный в синаптической щели фермент ацетилхолинэстераза, которая гидролизует ацетилхолин до ацетата и холина. Проницаемость мембраны возвращается к исходному уровню и мембрана реполяризуется. Этот процесс идет очень быстро: весь выделившийся в щель ацетилхолин расщепляется за 20 мс.

Некоторые фармакологические или токсические агенты (алкалоид физостигмин, органические фторфосфаты), ингибируя ацетилхолинэстеразу, удлиняют период ПКП, что вызывает "залпы" потенциалов действия и спастические сокращения мышцы в ответ на одиночные импульсы мотонейронов.

Образовавшиеся продукты расщепления- ацетат и холин- большей частью транспортируются обратно в пресинаптические окончания, где используются в синтезе ацетилхолина при участии фермента холин-ацетилтрансферазы (рис. 20).

Типы синапсов:

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом - медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка - это синапс между нейронами, концевая пластинка - это постсинаптическая мембрана мионеврального синапса, моторная бляшка - это пресинаптичсское окончание аксона на мышечном волокне.

Конец работы -

Эта тема принадлежит разделу:


Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Рязанский государственный университет имени С.А. Есенина»

Институт психологии, педагогики и социальной работа

Контрольная работа по дисциплине «Нейрофизиология и основы ВНД»

по теме: «Понятие о синапсе, строение синапса.

Передача возбуждения в синапсе»

Выполнил студент 13Л группы

1курса ОЗО(3) А.И. Шарова

Проверил:

профессор медицинских наук

О.А. Белова

Рязань 2010

1. Введение……………………………………………………………..3

2. Структура и функции синапса……………………………………...6

3. Передача возбуждения в синапсе………………………………….8

4. Химический синапс…………………………………………………9

5. Выделение медиатора……………………………………………...10

6. Химические медиаторы и их виды………………………………..12

7. Заключение……………………………………………………………15

8. Список литературы………………………………………………....17

Введение .

Наше тело - один большой часовой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм - тело, состоит из клеток, соединяющих их тканей и систем: все это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утонченный механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека - все это, в сущности, основано на взаимодействии клеток между собой. Все это, в сущности, основано на передаче сигнала от одной клетке к другой. Причем, каждая клетка выполняет свою работу, а иногда имеет несколько функций. Разнообразие функций обеспечивается двумя факторами: тем, как клетки соединены между собой, и тем, как устроены эти соединения. Переход (передача) возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную, секреторную) осуществляется через специализированное образование, которое получило название синапс.

Структура и функции синапса.

Каждый многоклеточный организм, каждая ткань, состоящая из клеток, нуждается в механизмах, обеспечивающих межклеточные взаимодействия. Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования - синапсы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс - представляет собой сложное структурное образование, состоящее из

    пресинаптической мембраны - электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке (чаще всего это концевое разветвление аксона)

    постсинаптической мембраны - электрогенная мембрана иннервируемой клетки, на которой образован синапс (чаще всего это участок мембраны тела или дендрита другого нейрона)

    синаптической щели - пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови

Синапсы могут быть между двумя нейронами (межнейронные) , между нейроном и мышечным волокном (нервно-мышечные) , между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные) , между отростками нейрона и другими клетками (железистыми) .

Существует несколько классификаций синапсов.

1. По локализации :

1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:

а) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;

б) аксодендритный, образованный аксоном одного нейрона и дендритом другого;

в) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

г) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов :

а) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

б) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов :

1) возбуждающие синапсы;

2) тормозящие синапсы.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной - А. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше; Б. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

3. По механизмам передачи возбуждения в синапсах :

1) химические;

2) электрические;

3) смешанные

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов. Отличается большей специализированностью, чем электрический синапс.

Различают несколько видов химических синапсов , в зависимости от природы медиатора:

а) холинэргические.

б) адренэргические.

в) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

г) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

д) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

Синапс адренергический - синапс, медиатором в котором является норадреналин. В нем происходит передача возбуждения при помощи трех катехоламинов; различают a1-, b1-, и b2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение a- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; b1- адренореактивных синапсов - усиление работы сердца; b2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапсы имеют ряд физиологических свойств :

1) клапанное свойство синапсов , т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки , связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

Передача возбуждения в синапсе.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциал нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.

Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.

Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.

Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

Энциклопедичный YouTube

    1 / 5

    Межнейронные химические синапсы

    Синапсы. Физиология человека - 3

    Электрические свойства нейронов - Вячеслав Дубынин

    Синапс.Научный фильм [Приволжское бюро детекции лжи]

    Мозг: работа синапсов - Вячеслав Дубынин

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Классификации синапсов

По механизму передачи нервного импульса

  • химический - это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор , присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
  • электрический (эфапс) - место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований - коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы - пресинаптический потенциал действия создает ток , который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

По местоположению и принадлежности структурам

  • периферические
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендрит ами, в том числе
      • аксо-шипиковые - с дендритными шипиками , выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

По нейромедиатору

  • аминергические, содержащие биогенные амины (например, серотонин , дофамин);
    • в том числе адренергические, содержащие адреналин или норадреналин ;
  • холинергические , содержащие ацетилхолин ;
  • пуринергические, содержащие пурины ;
  • пептидергические, содержащие пептиды .

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия

  • возбуждающие
  • тормозные .

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные . Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы .

К специальным формам синапсов относятся шипиковые аппараты , в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы .

В синаптическом расширении имеются мелкие везикулы , так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы , ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами , которые открываются при связывании с ними нейромедиатора , что приводит к изменению мембранного потенциала . Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза . Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии .

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс .

Так называемый «принцип Дейла » (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль .
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.

Область контакта между двумя нейронами называют синапсом .

Внутреннее строение аксодендритического синапса.

а) Электрические синапсы . Электрические синапсы в нервной системе млекопитающих встречаются редко. Они образованы щелевидными контактами (нексусами) между дендритами или сомами соприкасающихся нейронов, которые соединяются с помощью цитоплазматических каналов диаметром 1,5 нм. Процесс передачи сигнала происходит без синаптической задержки и без участия медиаторов.

Посредством электрических синапсов возможно распространение электротонических потенциалов от одного нейрона к другому. Вследствие тесного синаптического контакта модуляция проведения сигнала невозможна. Задача этих синапсов - осуществление одновременного возбуждения нейронов, выполняющих одинаковую функцию. Примером служат нейроны дыхательного центра продолговатого мозга, которые во время вдоха синхронно генерируют импульсы. Кроме того, примером могут служить нейронные цепи, управляющие саккадами, при которых точка фиксации взора перемещается от одного объекта внимания к другому.

б) Химические синапсы . Большинство синапсов нервной системы - химические. Функционирование таких синапсов зависит от высвобождения медиаторов. Классический химический синапс представлен пресинаптической мембраной, синаптической щелью и постсинаптической мембраной. Пресинаптическая мембрана - часть булавовидного расширения нервного окончания клетки, передающей сигнал, а постсинаптическая мембрана - часть клетки, получающей сигнал.

Медиатор высвобождается из булавовидного расширения посредством экзоцитоза, проходит через синаптическую щель и связывается с рецепторами на постсинаптической мембране. Под постсинаптической мембраной расположена субсинаптическая активная зона, в которой после активации рецепторов постсинаптической мембраны происходят разнообразные биохимические процессы.

В булавовидном расширении расположены содержащие медиаторы синаптические пузырьки, а также большое количество митохондрий и цистерны гладкой эндоплазматической сети. Применение традиционных методик фиксации при исследовании клеток позволяет различить на пресинаптической мембране пресинаптические уплотнения, ограничивающие активные зоны синапса, к которым при помощи микротрубочек направляются синаптические пузырьки.


Аксодендритический синапс.
Срез препарата спинного мозга: синапс между концевым участком дендрита и, предположительно, двигательным нейроном.
Наличие округлых синаптических пузырьков и постсинаптического уплотнения характерно для возбуждающих синапсов.
Срез дендрита проведен в поперечном направлении, о чем свидетельствует наличие множества микротрубочек.
Кроме того, видны некоторые нейрофиламенты. Участок синапса окружен протоплазматическим астроцитом.

Процессы, происходящие в нервных окончаниях двух типов.
(А) Синаптическая передача небольших молекул (например, глутамата).
(1) Транспортные пузырьки, содержащие мембранные белки синаптических пузырьков, направляются вдоль микротрубочек к плазматической мембране булавовидного утолщения.
В это же время происходит перенос молекул ферментов и глутамата путем медленного транспорта.
(2) Мембранные белки пузырьков выходят из плазматической мембраны и формируют синаптические пузырьки.
(3) Глутамат погружается в синаптические пузырьки; происходит накопление медиатора.
(4) Пузырьки, содержащие глутамат, подходят к пресинаптической мембране.
(5) В результате деполяризации происходит экзоцитоз медиатора из частично разрушенных пузырьков.
(6) Высвобождающийся медиатор распространяется диффузно в области синаптической щели и активирует специфические рецепторы на постсинаптической мембране.
(7) Мембраны синаптических пузырьков транспортируются обратно в клетку путем эндоцитоза.
(8) Происходит частичный обратный захват глутамата в клетку для повторного использования.
(Б) Передача нейропептидов (например, субстанции Р), осуществляющаяся одновременно с синаптической передачей (например, глутамата).
Совместная передача этих веществ происходит в центральных нервных окончаниях униполярных нейронов, обеспечивающих болевую чувствительность.
(1) Синтезированные в комплексе Гольджи (в области перикариона) пузырьки и предшественники пептидов (пропептиды) транспортируются к булавовидному расширению путем быстрого транспорта.
(2) При их попадании в область булавовидного утолщения завершается процесс формирования молекулы пептида, и пузырьки транспортируются к плазматической мембране.
(3) Деполяризация мембраны и перенос содержимого пузырьков в межклеточное пространство путем экзоцитоза.
(4) Одновременно с этим происходит высвобождение глутамата.

1. Активация рецепторов . Молекулы медиаторов проходят через синаптическую щель и активируют рецепторные белки, расположенные парами на постсинаптической мембране. Активация рецепторов запускает ионные процессы, которые приводят к деполяризации постсинаптической мембраны (возбуждающее постсинаптическое действие) или гиперполяризации постсинаптической мембраны (тормозящее постсинаптическое действие). Изменение электротонуса передается в сому в виде затухающего по мере распространения электротонического потенциала, за счет которого происходит изменение потенциала покоя в начальном сегменте аксона.

Ионные процессы подробно описаны в отдельной статье на сайте. При преобладании возбуждающих постсинаптических потенциалов начальный сегмент аксона деполяризуется до порогового уровня и генерирует потенциал действия.

Наиболее распространенный возбуждающий медиатор ЦНС - глутамат, а тормозной - гамма-аминомасляная кислота (ГАМК). В периферической нервной системе медиатором для двигательных нейронов поперечно-полосатой мускулатуры служит ацетилхолин, а для чувствительных нейронов - глутамат.

Последовательность процессов, происходящих в глутаматергических синапсах, показана на рисунке ниже. При передаче глутамата совместно с другими пептидами высвобождение пептидов осуществляется внесинаптическим путем.

Большинство чувствительных нейронов помимо глутамата выделяет и другие пептиды (один или несколько), высвобождающиеся в различных участках нейрона; однако основная функция этих пептидов - модуляция (повышение или снижение) эффективности синаптической передачи глутамата.

Кроме того, нейротрансмиссия может происходить путем диффузной внесинаптической передачи сигнала, характерной для моноаминергических нейронов (нейронов, использующих биогенные амины для обеспечения нейротрансмиссии). Выделяют две разновидности моноаминергических нейронов. В одних нейронах осуществляется синтез катехоламинов (норадреналина или дофамина) из аминокислоты тирозина, а в других - серотонина из аминокислоты триптофана. Например, дофамин высвобождается как в синаптической области, так и из варикозных утолщений аксона, в которых также происходит синтез этого нейромедиатора.

Дофамин проникает в межклеточную жидкость ЦНС и до момента деградации способен активировать специфические рецепторы на расстоянии до 100 мкм. Моноаминергические нейроны присутствуют во многих структурах ЦНС; нарушение передачи импульса этими нейронами приводит к различным заболеваниям, среди которых выделяют болезнь Паркинсона, шизофрению и глубокую депрессию.

Оксид азота (газообразная молекула) также участвует в диффузной нейропередаче в глутаматергической системе нейронов. Избыточное влияние оксида азота оказывает цитотоксическое действие, особенно в тех участках, кровоснабжение которых нарушено за счет тромбоза артерий. Глутамат также является потенциально цитотоксическим нейромедиатором.

В отличие от диффузной нейротрансмиссии, традиционную синаптическую передачу сигнала ввиду ее относительной стабильности называют «проводниковой».

в) Резюме . Мультиполярные нейроны ЦНС состоят из сомы, дендритов и аксона; аксон образует коллатеральные и терминальные ветви. В соме расположены гладкая и шероховатая эндоплазматическая сети, комплексы Гольджи, нейрофиламенты и микротрубочки. Микротрубочки пронизывают нейрон на всем протяжении, принимают участие в процессе антероградного транспорта синаптических пузырьков, митохондрий и веществ для построения мембран, а также обеспечивают ретроградный транспорт «маркерных» молекул и разрушенных органелл.

Существует три вида химических межнейрональных взаимодействий: синаптическое (например, глутаматергическое), внесинаптическое (пептидергическое) и диффузное (например, моноаминергическое, серотонинергическое).

Химические синапсы классифицируют по анатомическому строению на аксодендритические, аксосоматические, аксоаксональные и дендро-дендритические. Синапс представлен пре- и постсинаптическими мембранами, синаптической щелью и субсинаптической активной зоной.

Электрические синапсы обеспечивают одновременную активацию целых групп , образуя между ними электрические связи за счет щелевидных контактов (нексусов).

Диффузная нейротрансмиссия в головном мозге.
Аксоны глутаматергического (1) и дофаминергического (2) нейронов образуют плотные синаптические контакты с отростком звездчатого нейрона (3) полосатого тела.
Дофамин высвобождается не только из пресинаптической области, но и из варикозного утолщения аксона, откуда диффузно распространяется в межклеточное пространство и активирует дофаминовые рецепторы дендритного ствола и стенки перицита капилляра.

Растормаживание.
(А) Возбуждающий нейрон 1 активирует тормозной нейрон 2, который в свою очередь затормаживает нейрон 3.
(Б) Появление второго тормозного нейрона (2б) оказывает противоположное влияние на нейрон 3, поскольку происходит торможение нейрона 2б.
Спонтанно-активный нейрон 3 генерирует сигналы в условиях отсутствия тормозных влияний.

2. Лекарственные средства - «ключи» и «замки» . Рецептор можно сравнить с замком, а медиатор - с подходящим к нему ключом. В том случае, если процесс высвобождения медиатора нарушится с возрастом или в результате какого-либо заболевания, лекарственное средство может сыграть роль «запасного ключа», выполняющего аналогичную медиатору функцию. Такое лекарственное средство называют агонистом. В то же время в случае чрезмерной продукции медиатор может быть «перехвачен» блокатором рецептора - «фальшивым ключом», который свяжется с «замком»-рецептором, но при этом не вызовет его активацию.

3. Торможение и растормаживание . Функционирование спонтанно-активных нейронов сдерживается под влиянием тормозных нейронов (обычно, ГАМКергических). Деятельность тормозных нейронов, в свою очередь, может быть ингибирована воздействующими на них другими тормозными нейронами, в результате чего происходит растормаживание клетки-мишени. Процесс растормаживания - важная особенность нейрональной активности в базальных ганглиях.

4. Редкие виды химических синапсов . Выделяют два типа аксоаксональных синапсов. В обоих случаях булавовидное утолщение образует тормозной нейрон. Синапсы первого типа образуются в области начального сегмента аксона и передают мощное ингибирующее влияние тормозного нейрона. Синапсы второго типа образуются между булавовидным утолщением тормозного нейрона и булавовидными утолщениями возбуждающих нейронов, что приводит к угнетению высвобождения медиаторов. Этот процесс получил название пресинаптического торможения. В этом плане традиционный синапс обеспечивает постсинаптичсекое торможение.

Дендро-дендритические (Д-Д) синапсы образуются между дендритными шипиками дендритов смежных шипиковых нейронов. Их задача - не генерирование нервного импульса, а изменение электротонуса клетки-мишени. В последовательных Д-Д-синапсах синаптические пузырьки располагаются только в одном дендритном шипике, а в реципрокном Д-Д-синапсе- в обоих. Возбуждающие Д-Д-синапсы изображены на рисунке ниже. Тормозные Д-Д-синапсы широко представлены в переключающих ядрах таламуса.

Кроме того, выделяют немногочисленные сомато-дендритические и сомато-соматические синапсы.

Аксоаксональные синапсы коры головного мозга.
Стрелками указано направление проведения импульсов.

(1) Пресинаптическое и (2) постсинаптическое торможение спинномозгового нейрона, направляющегося к головному мозгу.
Стрелками указано направление проведения импульсов (возможно торможение переключательного нейрона под действием тормозных влияний).

Возбуждающие дендро-дендритические синапсы. Изображены дендриты трех нейронов.
Реципрокный синапс (справа). Стрелками указано направление распространения электрото-нических волн.

Учебное видео - строение синапса

Посылающий сигналы), постсинаптического (клетка, принимающая сигналы) и соединяющей их структуры (синаптическая щель). В тех случаях, когда речь идет о контактах между нервными клетками, синапсы могут образовываться между аксонами и сомой, аксонами и дендритами , аксонами и аксонами, дендритами и дендритами, а также между сомой и дендритами нейронов. В зависимости от способа передачи возбуждения выделяют химические (наиболее распространенные) и электрические синапсы. Существуют также смешанные синапсы, сочетающие оба механизма передачи.

Электрические синапсы распространены у беспозвоночных и низших позвоночных, но иногда встречаются и в некоторых участках мозга млекопитающих. Они образуются чаще всего между дендритами близко расположенных нейронов и осуществляют быструю (без синаптической задержки) передачу сигналов, благодаря наличию высокопроводящего контакта, обусловленного наличием узкой синаптической щели и специальных ультраструктур, снижающих электрическое сопротивление в области контакта.

Химические синапсы преобладают в мозгу млекопитающих. На соме и дендритах каждого нейрона может локализоваться до нескольких десятков тысяч синаптических окончаний. В их пресинаптических окончаниях содержатся синаптические пузырьки (везикулы), содержащие химический посредник, называемый медиатором (нейромедиатор, нейротрансмиттер) и имеющие различные размеры и электронную плотность. Так, обнаружены малые прозрачные пузырьки, заполненные низкомолекулярными, так называемыми, «классическими» медиаторами (ацетилхолин, ГАМК, глицин и др.) и крупные электронно-плотные, содержащие пептидные медиаторы. Медиаторы образуются в соме нейрона и затем по аксону транспортируются в синаптическое окончание. Согласно сформулированному в 1930-х годах закону Дейла, медиатор, обнаруженный в одном синапсе, должен быть также медиатором во всех других синаптических окончаниях того же нейрона. Позже выяснилось, что в одном нейроне может синтезироваться и в одном окончании освобождаться более одного медиатора, однако набор медиаторов для данного нейрона всегда постоянен.

Приходящий электрический импульс при участии ионов кальция вызывает освобождение медиатора из пресинаптических окончаний. Медиатор диффундирует через синаптическую щель шириной 10 - 50 нм и взаимодействует с рецепторными белками постсинаптической мембраны, что приводит к возникновению постсинаптического потенциала. Время, в течение которого происходят эти реакции, называется синаптической задержкой и составляет 0, 3 - 1 мс. Не связавшийся с рецептором медиатор либо разрушается специальными ферментами, либо захватывается обратно в пузырьки пресинаптического окончания.

Рецепторы постсинаптической мембраны подразделяются на два основных класса, которые различаются механизмами действия и скоростью проведения сигналов. Существуют быстродействующие (ионотропные) рецепторы, скорость действия которых измеряется миллисекундами и медленнодействующие (метаботропные), где происходящие процессы измеряются секундами и даже минутами. Результатом взаимодействия медиатора с первым типом рецепторов является открытие мембранных каналов для ионов натрия, калия, кальция или хлора. В зависимости от природы поступающего в постсинаптическую клетку иона возникает либо деполяризация, либо гиперполяризация мембраны вблизи синапса. Так, например, поступление в постсинаптическую клетку положительно заряженных ионов натрия вызывает ее деполяризацию, выражающуюся в возникновении местного возбуждающего постсинаптического потенциала (ВПСП). С другой стороны, анионы хлора вызывают гиперполяризацию постсинаптической клетки, т. е. тормозной постсинаптический потенциал (ТПСП). Ввиду того, что на каждом нейроне оканчивается множество синаптических окончаний, происходит суммация всех постсинаптических потенциалов обоих типов, что определяет вероятность возникновения импульса в постсинаптическом нейроне. При этом статистический вес каждого из синапсов оказывается различным: наибольший вклад вносят те из них, которые находятся на соме нейрона, наименьший - расположенные на окончаниях тонких дендритов.

Медленнодействующие рецепторы являются комплексом из нескольких белков, которые после взаимодействия с медиатором последовательно меняют свою конформацию. В результате этого происходит активация выхода вторичных (внутриклеточных) медиаторов, которыми могут быть ионы кальция, циклические нуклеотиды, диацилглицерол и др. В состав метаботропных рецепторов входят, по крайней мере, три белка: (1) собственно рецепторный белок (R-белок), связывающийся с медиатором, (2) так называемый G-белок, передающий сигнал с рецепторного белка и (3) белок-эффектор, который является ферментом, катализирующим образование вторичного медиатора. На стадии взаимодействия R-белка с G-белком происходит усиление приходящего сигнала, т. к. активированная с медиатором молекула R-белка способна контактировать с сотнями молекул G-белка. При взаимодействии R-белка с G-белком происходит временная активация последнего, в результате чего происходит активация фермента, образующего вторичные медиаторы. Результатом действия этих внутриклеточных медиаторов может быть как открытие ионных каналов (причем, более широко распространенное и продолжительное, чем при действии ионотропных рецепторов), так и многие другие внутриклеточные процессы вплоть до экспрессии генов в ядре клетки.

Характерным для синапсов является их особенность изменять чувствительность к действию медиаторов в процессе своей активности. Это свойство называется синаптической пластичностью и составляет основу таких процессов, как память и обучение. Различают кратковременную синаптическую пластичность, продолжающуюся не более 20 мин, и долговременную, длящуюся от нескольких десятков минут до нескольких недель. Пластичность может проявляться как в форме потенциации (активации), так и в форме депрессии. В ее основе лежат различные механизмы от изменения концентрации ионов кальция в синаптической области до фосфорилирования или разрушения синаптических белков, а также экспрессии или репрессии генов, катализирующих синтез таких белков. В зависимости от степени пластичности синапсы разделяют на стабильные и динамические, причем первые формируются в онтогенезе раньше, чем последние.