В описываемой статье мы разберем подробно, что такое модель в информатике. Рассмотрим виды, а также способы проектирования. В данном разделе имеется множество полезных знаний, которые позволят будущим специалистам в сфере информационных технологий работать без каких-либо усилий. Для того чтобы решить любую задачу, причем неважно, научную или производственную, следует придерживаться цепочки: объект, модель, алгоритм, программа, результат, реализация. Нужно обратить внимание на второй пункт. Если этого звена не будет, то и сама проектировка не подлежит исполнению. Для чего же используется модель, и что под этим словом подразумевается? Далее раскроем этот вопрос.

Модель

Что такое модель в информатике? Благодаря ей можно составить образ какого-либо объекта, который реально существует. Также при необходимости можно отобразить все его свойства и признаки.

Для того чтобы решить какую-то задачу, следует сделать ее модель, ведь именно она и будет использоваться при дальнейшем проектировании. В школьном курсе информатики данные понятия вводятся уже в шестом классе. Однако в самом начале учат детей лишь пониманию, что же это такое.

Классификация

Описываемым термином можно назвать описание какого-либо процесса, его изображение, схему, уменьшенную копию реального объекта и так далее. Учитывая все вышеперечисленное, следует сказать, что модель - довольно широкое понятие. Его можно разделить на группы: материальное, идеальное.

Под первым типом понимают комплекс данных, который представляет собой реальный объект. Это может быть либо тело, либо процесс и так далее. Данная группа делится еще на два типа: физические, аналоговые. Эта классификация полностью условная, так как между указанными двумя подвидами нет никакой четкой черты.

Идеальную модель охарактеризовать еще труднее, потому что она связана полностью с воображением человека, его восприятием мира. К ней также можно отнести и любое произведение искусства, в том числе картины, прозу, спектакли и так далее.

Цели моделирования

Рассматривая, что такое модель в информатике, необходимо также сказать и о целях ее создания.

Моделирование - довольно важный этап, так как он позволяет осуществить большое количество задач. Именно об этом мы далее и поговорим.

Для начала, моделирование позволит человеку больше узнать о том, что его окружает. Если говорить в обширном смысле, то в самой древности люди собирали какие-то данные, информацию, факты и передавали из поколения в поколение. Примером можно назвать модель нашего мира, которая называется “глобус”. В прошлые века, как правило, моделирование было построено на несуществующих объектах, с трудом познаваемыми человеком, которые на данный момент уже имеют свою реализацию в качестве материального предмета. Большинство из них прочно закрепились в нашей жизни. Речь может идти о зонтах, мельницах и так далее.

На данный момент модели систем информатики касаются путей достижения максимального эффекта от принимаемых решений, а также обращают внимание на последствия какого-либо процесса или же действия. Если говорить о последнем подпункте, то в пример можно привести модель, которая выясняет, какие последствия будут в результате повышения стоимости проезда либо после утилизации каких-либо отходов под землей.

Задачи моделирования

Рассматривая, что такое модель в информатике, необходимо еще сказать о задачах данного способа проектирования. Описываемый процесс имеет несколько общих целей, о которых мы и поговорим далее. Если рассматривать более детально, то задачами являются этапы решения каких-либо проблем. То есть, в принципе, таковой можно назвать небольшую цель, с которой необходимо справиться, чтобы достигнуть определенных высот.

Классификация задач

При этом делятся данные задачи на две группы. Речь идет о прямых и обратных. Что касается последних, то подобные формулировки ставят перед разработчиком вопросы типа: “Как увеличить эффективность до максимума?” или “Какое же действие полностью удовлетворит имеющееся условие?” Если говорится о прямых, то такие задачи ставят перед человеком вопросы о том, что будет, если разработчик поступит так или иначе. Нужно заметить: любая прямая формулировка имеет исходные данные, а также ставит конкретные условия.

Вербальная модель

Также необходимо рассказать о видах моделей в информатике. Рассмотрим первую: вербальную. Такой метод моделирования позволяет работать с идеальными или абстрактными вопросами. Следует заметить, что в науке считаются двумя основными видами математический и информационный. Хоть и вербальный на данный момент не сильно распространен, однако он используется. Под ним подразумевают, что все задачи, цели и так далее описываются с помощью букв и связанных предложений. К таковым моделям можно отнести обычную художественную литературу, составленный протокол, какие-либо правила, информацию, описание предмета, явления и так далее.

Математическая модель

Математическая модель - это в информатике один из главных видов проектирования. Она еще известна, как алгоритмическая. Следует заметить, что между математическим и информационным видами граница максимально условная. Об этом уже говорилось ранее.

Если не задаваться сложными терминами, а попытаться объяснить простым языком, то описываемая модель необходима для того, чтобы решить любую задачу или достигнуть цель при помощи математической точки зрения. Следует заметить, что каждый человек в реальной жизни занимается постоянно проектированием такой модели. Допустим, обычная бытовая задача, например, купить что-то в магазине, требует составления таковой. Человек знает, сколько стоят продукты. Необходимо посчитать, какая сумма в итоге нужна для осуществления покупки, сложив все данные. Это является обычным примером математической модели.

Информационная модель

Следует заметить, что с этим видом моделирования нужно ознакомиться любому человеку, который видит свое будущее в IT-сфере. Как правило, все информационные модели создаются при помощи компьютерной техники. Причем речь идет не только конкретно о проектировании каких-то диаграмм, но используются еще и таблицы, рисунки, чертежи, схемы и так далее.

В целом информационная модель представляет собой свойства того объекта, который мы отображаем, максимально описывая его состояние, а также то, насколько он связан с окружающим миром, отношение к другим внешним предметам и влияние на них. Следует отметить, что информационной моделью может служить обычный текст, рисунок, словесное описание, чертеж, формула и так далее.

Такой вид отличается от других вышеперечисленных тем, что он является данными. То есть модель не имеет материального воплощения, так как считается примитивным комплексом информации, представленной в разном виде.

Системный подход к созданию модели

Классификацию моделей в информатике мы уже рассмотрели, теперь следует сказать о том, какой подход следует использовать, чтобы составить идеальную схему.

Необходимо понять, что такое система. Это комплекс элементов, которые взаимодействуют между собой, а также работают вместе для того, чтобы выполнить определенную задачу. Построение модели связано с использованием системного подхода. Объектом будет считаться любой комплекс, который функционирует в качестве единого в специальной среде. Иногда бывает так, что проект довольно сложный, поэтому систему делят на две части.

Цель использования

Приведем примеры моделей в информатике, для того чтобы понять, какими целями руководствуются производители при создании записи.

Следует заметить, что есть такие виды, как учебные, имитационные, игровые и так далее. Рассмотрим их.

К учебным относятся все материалы, при помощи которых осуществляется обучение.

К опытным следует добавить модели уменьшенной копии, создаваемые на основе реальных объектов.

Имитационные могут служить информацией, которая позволит понять, что произойдет в результате какого-либо действия. К примеру, если человек проводит реформу, он должен составить такую модель. Это поможет приблизительно понять то, как люди отреагируют на новые изменения. Либо же, например, чтобы человеку сделать операцию по пересадке какого-либо органа, в самом начале исследований проводится большое количество опытов. Их также можно назвать имитационной моделью. Таким образом, она представляет собой систему проб и ошибок. Это позволяет принимать более оправданные решения.

Игровой моделью является система, которая ставит определенные объекты в какие-либо рамки. Это может быть экономическая, деловая или военная игра. Таким образом, человек способен понять поведение определенного объекта в нужной ему среде.

Научно-техническую следует использовать для того, чтобы изучить какое-либо явление и процесс, который трудно исследовать в обычной жизни. Это может быть создание прибора, имитирующий грозовой разряд, либо же модель движения, полностью копирующая солнечную систему.

Способ представления

Подытоживая все вышесказанное о моделях данных в информатике, необходимо разузнать, как же представляется созданная запись.

Она бывает материальная и нематериальная. К первому виду нужно отнести все копии, которые были сняты с существующих объектов. Таким образом, их можно взять в руки, потрогать, понюхать и так далее. Они даже способны имитировать какие-либо свойства оригинального объекта, а также его действия. Данные материальные модели являются опытным методом проектирования.

К нематериальным относятся те, которые работают на теории. Они идеальные либо же абстрактные. Эта категория также имеет несколько типов. Речь идет об информационных, а еще воображаемых вариантах. Первый представляет собой перечень данных, который касается определенного объекта. Таковыми можно назвать таблицы, рисунки, схемы и так далее.

Однако многих их интересует, почему же данная модель класса информатики считается нематериальной. Текст хоть и напечатан, таблица составлена, но его потрогать нельзя. Именно поэтому данная модель является абстрактной. К слову, среди информационных вариантов записи имеются наглядные примеры.

К воображаемой модели относят то, что называется творческим процессом, то есть все происходящее в сознании человека. Это побуждает его создать на основе данной схемы оригинальный объект.

Какие только явления не скрываются за словом модель:

· демонстрационный образец на стенде выставки,

· макет моста через реку,

· известная формула земного притяжения Р = тgН,

· теория развития общества,

· расчеты климатических последствий образования «озоновых дыр»

Как совмещаются в одном слове такие разные понятия?

Оказывается, все многообразие моделей отличает нечто общее, а именно — моделью может стать искусственно созданный человеком абстрактный или материальный объект, явление, процесс.

Анализ модели и наблюдение за ней позволяют познать суть реально существующего более сложного объекта, процесса или явления, называемого прототипом, или оригиналом. Значит, можно дать более простое определение и модели, и процесса моделирования.

Одним из важнейших свойств модели является ее адекватность моделируемому объекту, процессу или явлению.

Адекватность модели оценивается двумя параметрами:

1) Согласованность с практикой . Если созданная модель дает удовлетворительные результаты при решении жизненных задач, то говорят, что модель адекватна рассматриваемому объекту, процессу или явлению. (Удовлетворительные - значит, близкие к тем, которые могут иметь место в реальных процессах, для реальных объектов и явлений).

2) Согласованность с теорией . Модель должна быть согласована не только с практикой, но и с теорией.

Искусство построения моделей как раз и заключается в том, чтобы, не переусложнив модель, учесть в ней все существенное и отбросить второстепенное, добившись адекватности исходному объекту.

Поскольку в модели всегда отражена лишь часть бесконечного разнообразия информации об объекте, процессе или явлении, то область адекватности (применимости) модели всегда ограничена, хотя может быть очень широкой.

Всякая модель имеет ограниченную область адекватности, и за пределами этой области она перестает удовлетворительно отражать свойства моделируемого объекта.

Поэтому и применить модель для решения той или иной задачи допустимо только тогда, когда не произошел выход за границы области адекватности.

Как же проверить, что выбранная модель применима?


Прежде всего, надо убедиться, что все факторы, существенные для данной задачи, присутствуют в модели. Затем надо проверить, что в исходных данных задачи значения параметров, описывающих действие факторов, не выходящих за границы адекватности модели.

Моделирование — построение и использование моделей для исследования и изучения объектов, процессов, явлений.

Может возникнуть вопрос, почему бы не исследовать сам оригинал, зачем создавать его модель?

Во-первых, в реальном времени оригинал (прототип) может уже не существовать или его нет в действительности. Для моделирования время не помеха. На основании известных фактов методом гипотез и аналогий можно построить модель событий далекого прошлого.

Так, к примеру, родились теории вымирания динозавров или гибели Атлантиды. С помощью такого же метода можно заглянуть в будущее. Так, ученые-физики построили теоретическую модель «ядерной зимы », которая начнется на нашей планете в случае атомной войны. Такая модель — предостережение человечеству.

Во-вторых, оригинал может иметь много свойств и взаимосвязей. Чтобы глубоко изучить какое-то конкретное, интересующее нас свойство, иногда полезно отказаться от менее существенных, вовсе не учитывая их.

Цели моделирования :

· Изучение, как устроен объект (как протекает процесс, происходит явление), какова его структура, каковы его свойства, законы развития и функционирования, каково его взаимодействие с окружающим миром (понятийная модель).

· Определение наилучших способов управления объектом или процессом (управленческая модель).

· Прогнозирование прямых и косвенных последствий функционирования или развития объекта, процесса или явления (прогностические модели).

· Организация процесса обучения и самообучения.

Что будет, если? Как сделать, чтобы?

Что же поддается моделированию ? Это может быть объект, явление или процесс. Различают модели объектов, явлений, процессов.

1. Моделями объектов могут быть:

· уменьшенные копии архитектурных сооружений либо художественных произведений, а также наглядные пособия на кафедрах и т. д.;

· модель может отражать нечто реально существующее, скажем, атом водорода , Солнечную систему, структуру парламентской власти в стране, грозовой разряд;

· но нередко под моделью понимают абстрактное обобщение реально существующих объектов;

Модель, демонстрирующая одежду, представляет не какого-то реального человека с его личными особенностями и недостатками, а некий обобщенный идеальный образ, стандарт.

2. Для изучения явлений живой природы, для предотвращения катастрофы, для применения природных сил на благо человечества создаются модели явлений .

Академик Георг Рихман, сподвижник и друг великого Ломоносова , еще в начале XVIII века моделировал магнитные и электрические силы, чтобы изучать их и найти им в дальнейшем применение.

Когда речь идет о природных явлениях, часто мы имеем в виду не какой-то конкретный природный случай (селевой поток или землетрясение), а некоторое его обобщение.

В этих примерах прототипом модели выступает целый класс объектов или явлений с общими свойствами. В моделях объектов или явлений отражаются свойства оригинала — его характеристики, параметры.

Можно также создавать модели процессов , т. е. моделировать действия над материальными объектами: ход, последовательную смену состояний, стадий развития одного объекта или их системы.

Примеры тому общеизвестны: это модели экономических или экологических процессов, развития Вселенной или общества и т. п.

Любым действиям человека, будь то разрешение конкретной житейской проблемы или выполнение какой бы то ни было работы, предшествует возникновение в его сознании модели будущего поведения (это модель процесса) .

Собираетесь ли вы решать задачу или строить дом, переходите дорогу или отправляетесь в поход, — вы непременно сначала представляете себе все это в уме. Это главное отличие человека мыслящего от всех других живых существ на земле.

Модель может быть наглядной, образной — письменный план, набросок, чертеж или схема. Почти всегда такая модель возникает в нашем сознании до появления прототипа (оригинала), который она представляет.

Для одного и того же объекта (процесса, явления) может быть создано бесчисленное множество моделей . От чего это зависит? В первую очередь, вид моделиопределяется поставленной целью исследования . Немаловажную роль играют при создании модели средства и методы, с помощью которых осуществляется сбор информацию о прототипе.

Рассмотрим пример. Предположим, что вы в скором времени поедете в другой город на экскурсию. Вы — человек основательный и поэтому предварительно, используя разные источники, знакомитесь с его достопримечательностями и создаете собственную модель этого города. Ваша цель — знакомство с другой средой (городом). После экскурсии составленная ранее модель, возможно, будет существенно изменена, т. к. вы получили дополнительную информацию. Модель этого города для его главного архитектора будет существенно отличаться от вашей, т. к. он руководствуется иной целью — реконструкцией и строительством зданий.

Модель этого города для его жителя тоже будет отличной от всех предыдущих, т. к. его цель — обеспечение нормальной жизнедеятельности.

Можно без преувеличения сказать, что все образование - это изучение тех илииных моделей, а также приемов их использования.

Так, например, в курсе физики рассматривается множество разнообразных формул, выражающих зависимости между физическими величинами. Эти формулы представляют собой не что иное, как математические модели изучаемых объектов, процессов или явлений.

3.1. Понятие модели и классификация моделей

Решение задач, связанных с исследованием, проектированием, совершенствованием систем (особенно, сложных организационно-экономических или технических) бывает невозможно, трудно или нерационально проводить на самих этих системах.

К подобным задачам относятся, например, разработка и внедрение оптимальных вариантов бизнес-процессов на предприятии. Теоретически, можно сначала попробовать внедрить каждый из возможных вариантов бизнес-процессов и путем простого сравнения по некоторым показателям выбрать наилучший. Однако, практически это приведет к таким затратам времени и сил, после которых не всякое предприятие сможет выжить. Очевидно, что нужна некоторая предварительная оценка, «проигрывание» вариантов бизнес-процессов на каком-то упрощенном представлении самого предприятия и (или) процесса.

Другим примером может быть проведение экспериментов, позволяющим в масштабах отрасли, региона или государства внедрять новые технологии, варианты организационных структур, варианты взаимодействия предприятий и т.п. В подобных случаях, как правило, для проверки новшеств выбираются некоторые «типичные» предприятия (регионы, города), которые заменяя собой остальные предприятия (регионы, города) выступают в качестве объекта эксперимента.

В этих и других случаях исходная система заменяется некоторой другой материальной или абстрактной системой. Эта вторая система называется моделью. Первую же будем называть «объект моделирования» или «объект-оригинал». Дадим следующее определение.

Модель - это материальная или идеальная система, которая в определенных условиях может заменить объект-оригинал и служит для получения информации об объекте-оригинале и (или) других объектах, с ним связанных.

Уточняя определение, сформулируем следующие важные положения:

Модель - идеальный или материальный объект;

Модель - отображение или воспроизводство объекта-оригинала;

Модель - источник получения информации.

Можно перечислить характерные случаи, в которых требуется модель (как в научно-исследовательской, так и в производственной деятельности):

Когда объект-оригинал есть сложная система, непосредственное изучение которой затруднено, невозможно или экономически невыгодно;

Когда непосредственное эксперементирование с объектом-оригиналом может оказать разрушительное воздействие на него или другие объекты, с ним связанные;

Когда необходимо спрогнозировать возможное состояние или поведение объекта в будущем;

Когда необходимо разработать варианты и выбрать оптимальное решения, связанное с функционированием объекта-оригинала;

Когда объект-оригинал еще не существует в материальном виде, однако уже на этапе проектирования требуется представить информацию об этом объекте, оценить эффективность выбранных методов и средств его разработки;

Когда в практической деятельности необходимо упрощенное представление информации об объекте оригинале с целью информационного обеспечения людей, работающих с ним;

При обучении работе с моделируемой системой, в играх и т.п.

Термин моделирование означает исследование объектов с помощью их моделей. В более широком смысле слова моделирование понимается как процесс, включающий в себя не только исследование, но и разработку модели (рис.3.1).

Экспериментальное исследование реальных объектов на их моделях называется модельным экспериментом. В модельном эксперименте модель выступает одновременно и средством, и объектом исследования. При этом модель может применяться как для замещения самого объекта, так и быть замещением некоторых внешних условий и (или) систем, связанных с исследуемым объектом в реальном мире.

Чтобы выполнять свои функции, модель должна удовлетворять двум основным требованиям: быть достаточно простой, чтобы в отличие от оригинала ее можно было исследовать, экспериментировать с ней; быть подобной объекту-оригиналу, с необходимой полнотой воспроизводить его свойства.

Эти требования в некоторой степени противоречат друг другу. Действительно, наиболее подобной оригиналу будет модель, которая в точности воспроизводит его состав и структуру. Однако, в этом случае модель не станет упрощением объекта-оригинала. Поэтому подобие должно быть адекватным решаемой задаче. Так, если решается задача разработки оптимального плана выпуска продукции, нет смысла строить макет предприятия в масштабе один к одному. Для таких задач используются специальные математические модели, которые позволяют не только разработать план выпуска, но и определить условия, для которых он будет оптимальным.

Определение возможных видов моделей и границ их применимости позволяет заранее указать на способы и средства, с помощью которых могут быть решены те или иные задачи моделирования. Иначе говоря, для построения простых и адекватных задачам исследования моделей необходимо представлять, какие виды моделей существуют, в каких случаях они используются и какими выразительными возможностями обладают.

По средствам построения моделей они делятся на следующие обобщенные классы, которые показаны на рис.3.2. Материальные (предметные) модели являются моделями, которые воплощены в каких-то материальных объектах, имеющих искусственное или естественное происхождение. Среди них выделяют физические модели, которые представляют собой объекты той же природы, что и объекты-оригиналы. Этот вид моделей широко используется в технике при испытании и эксплуатации каких либо образцов. Например, путем физического моделирования (проведения натурных испытаний) определяются технико-экономические характеристики экспериментального образца (автомобили, станка, ЭВМ, самолета и т.п.) и затем результаты испытаний распространяются на все другие экземпляры данного типа. В экономике широко используются эксперименты на отдельных предприятиях для оценки показателей других предприятий данного класса.

В предметно-математических моделях не ставится задача воспроизвести физическое подобие с объектом-оригиналом. Главным здесь является воспроизведение закономерностей протекания процессов. Таким образом, предметно-математические модели обладают такими характерными чертами:

Они воплощаются в предмете (материальны);

Процессы, протекающие в таких моделях, отличны по природе от процессов в объекте-оригинале;

Процессы в модели и объекте-оригинале подчиняются одним и тем же закономерностям. Практически это означает, что процессы в модели и в объекте-оригинале могут быть описаны с помощью одних и тех же математических зависимостей.

Рис. 3.2. Обобщенная классификация моделей по средствам построения

Среди предметно-математических можно выделить такие виды моделей как:

Компьютерная (машинная) модель, в которой основой для моделирования процессов являются математические выражения, описывающие зависимости между их параметрами. Эти модели есть, по существу, компьютерными реализациями знаковых математических моделей (см. ниже);

Полунатурная модель, в которой наряду с ЭВМ используются отдельные блоки реальных систем, функционирующие под управлением людей или самой ЭВМ;

Модель-аналог, когда одна реальная система используется для моделирования другой системы, отличной по своей природе от первой.

В классе идеальных моделей выделяют мысленные (существующие в виде мысленных образов) и знаковые модели. Последние объединяет в себе довольно разнообразные модели, отличающиеся прежде всего по степени формализации действительности. Можно выделить следующие основные виды знаковых моделей:

Описательные модели (алгоритмы, программы, тексто-графические описания и т.п.);

Схематические модели (различные блок-схемы, диаграммы и т.п.);

Графоаналитические модели (построенные с помощью инструментариев различных сетей, графов);

Математические (говорят еще - логико-математические) модели.

Приведенная классификация является достаточно условной и, по-видимому, неполной. Важно отметить, что в процессе решения прикладных задач могут использоваться последовательно или даже одновременно разные модели. Так, моделирование с целью оптимизации организационной структуры и технологий бизнеса на предприятии выполняется, как правило, с использованием большого числа различных моделей. На первом этапе формируется примерный мысленный образ и описательная модель целевой системы. Для лаконичного структурированного отображения самого предприятия и процессов, в нем протекающих, используются различные варианты структурных схем и диаграмм (например, диаграммы потоков данных - DFD, диаграммы процессов в методологии IDEF0 и др., более подробно см. в ). Для количественного выражения и оптимизации критериев качества бизнес-процессов могут быть применены математические оптимизационные модели, для исследования которых, в свою очередь, применяются программно-аппаратные средства ЭВМ, т.е. предметно-математические модели. В общем случае, сначала строится комплекс знаковых моделей, которые в совокупности отображают текущее положение дел на предприятии. Потом строятся модели, которые отображают целевое состояние предприятии (организационную структуру, бизнес-процессы и функции, роли и обязанности управленческого персонала и др.). В практике реинжиниринга первый комплекс в совокупности называется информационной моделью «как есть» (as-is); второй - моделью «как должно быть» (to-be).

Предметно-математические и логико-математические модели образуют основу математического моделирования в широком смысле. По существу предметно-математические модели служат средством технической реализации моделей математических и, следовательно, предполагают существование последних. Рассмотрим математическом моделирование более подробно.

Моделирование можно рассматривать как замещение исследуемого объекта (оригинала) его условным образом, описанием или другим объектом, именуемым моделью и обеспечивающим близкое к оригиналу поведение в рамках некоторых допущений и приемлемых погрешностей. Моделирование обычно выполняется с целью познания свойств оригинала путем исследования его модели, а не самого объекта. Разумеется, моделирование оправдано в том случае когда оно проще создания самого оригинала или когда последний по каким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойства которого в определенном смысле сходны со свойствами исследуемого объекта. При этом требования к модели определяются решаемой задачей и имеющимися средствами . Существует ряд общих требований к моделям:

  1. Адекватность – достаточно точное отображение свойств объекта;
  2. Полнота – предоставление получателю всей необходимой информации об объекте;
  3. Гибкость – возможность воспроизведения различных ситуаций во всем диапазоне изменения условий и параметров;
  4. Трудоемкость разработки должна быть приемлемой для имеющегося времени и программных средств.

Моделирование – это процесс построения модели объекта и исследования его свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

  1. Разработка модели;
  2. Исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимости от способа реализации, все модели можно разделить на два больших класса: физические и математические.

Математическое моделирование принято рассматривать как средство исследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов и явлений на физических моделях, когда изучаемый процесс воспроизводят с сохранением его физической природы или используют другое физическое явление, аналогичное изучаемому . При этом физические модели предполагают, как правило, реальное воплощение тех физических свойств оригинала, которые являются существенными в конкретной ситуации. Например, при проектировании нового самолета создается его макет, обладающий теми же аэродинамическими свойствами; при планировании застройки архитекторы изготавливают макет, отражающий пространственное расположение ее элементов. В связи с этим физическое моделирование называют также макетированием .

Полунатурное моделирование представляет собой исследование управляемых систем на моделирующих комплексах с включением в состав модели реальной аппаратуры . Наряду с реальной аппаратурой в замкнутую модель входят имитаторы воздействий и помех, математические модели внешней среды и процессов, для которых неизвестно достаточно точное математическое описание. Включение реальной аппаратуры или реальных систем в контур моделирования сложных процессов позволяет уменьшить априорную неопределенность и исследовать процессы, для которых нет точного математического описания. С помощью полунатурного моделирования исследования выполняются с учетом малых постоянных времени и нелинейностей, присущих реальной аппаратуре. При исследовании моделей с включением реальной аппаратуры используется понятие динамического моделирования, при исследовании сложных систем и явлений - эволюционного, имитационного и кибернетического моделирования .

Очевидно, действительная польза от моделирования может быть получена только при соблюдении двух условий:

  1. Модель обеспечивает корректное (адекватное) отображение свойств оригинала, существенных с точки зрения исследуемой операции;
  2. Модель позволяет устранить перечисленные выше проблемы, присущие проведению исследований на реальных объектах.

По способу отображения действительности различают три ос­новных вида моделей - эвристические, физические и матема­тиче­ские.

Эвристические модели , как правило, представляют собой об­разы, рисуемые в воображении человека. Их описание ве­дется словами естественного языка и, обычно, неоднозначно и субъек­тивно. Эти модели неформализуемы, т. е. не описыва­ются фор­мально-логическими и математическими выраже­ниями, хотя и рождаются на основе представления реальных процессов и явле­ний. Эвристическое моделирование - основное средство вырвать­ся за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии че­ловека, его опыта и эрудиции. Эвристиче­ские модели используют­ся на начальных этапах проектирова­ния (или других видов дея­тельности), когда сведения о разраба­тываемом объекте еще скуд­ны. На последующих этапах проек­тирования эти модели заменя­ются на более конкретные и точ­ные.

Физические модели - материальны, но могут отличаться от реального объекта или его части размерами, числом и материа­лом элементов. Выбор размеров ведется с соблюдениемтеории подобия. К физическим моделям относятся реальные изделия, образцы, экспериментальные и натурные модели.

Физические модели подразделяются на объемные (модели и ма­кеты) и плоские (тремплеты).

Под моделью понимают изделие, являющееся упрощенным по­добием исследуемого объекта.

Под тремплетом понимают изделие, являющееся плоским мас­штабным отображением объекта в виде упрощенной ортого­нальной проекции или его контурным очертанием. Тремплеты вырезают из пленки, картона и т. п. и применяют при исследова­нии и проектировании зданий, установок, сооружений.

Под макетом понимают изделие, собранное из моделей или тремплетов.

Физическое моделирование - основа наших знаний и средство проверки наших гипотез и результатов расчетов. Такая модель позволяет охватить явление или процесс во всемих многообра­зии, наиболее адекватна и точна, но достаточно дорога, трудо­емка и менее универсальна. В том или ином виде с физическими моделя­ми работают на всех этапах проектирования.

Математические модели - формализуемые, т. е. представля­ют собой совокупность взаимосвязанных математических и фор­мально-логических выражений, как правило, отображающих ре­альные процессы и явления (физические, психические, социаль­ные и т. д.). Модели по форме представления могут быть:

Аналитические, их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Удобны, при анализе сущности описываемого явления или процесса, но отыскание их решений бывает весьма затруднено;

Численные, их решения - дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимо­связей между параметрами. В настоящее время такие модели реализуют в виде программных комплексов - пакетов программ для расчета на компьютере. Программные ком­плексы бывают прикладные, привязанные к предметной об­ласти и конкретной системе, явлению, процессу, и общие, реализующие универ­сальные математические соотношения (например, расчет сис­темы алгебраических уравнений).

Построение математических моделей возможно следующими способами:

Аналитическим путем, т. е. выводом из физических законов, математических аксиом или теорем;

Экспериментальным путем, т. е. посредством обработки ре­зультатов эксперимента и подбора аппроксимирующих (при­ближенно совпадающих) зависимостей.

Математические модели более универсальны, дешевы, позво­ляют поставить "чистый" эксперимент (т. е. в пределах точности модели исследовать влияние какого-то отдельного фактора при постоянстве других), прогнозировать развитие явления или про­цесса. Математические модели - основа построения компьютер­ных моделей и применения вычислительной техники. Резуль­таты математического моделирования нуждаются в обязатель­ном со­поставлении с данными физического моделирования - с целью проверки полученных данных и для уточнения самой мо­дели.

К промежуточным между эвристическими и математическими моделями можно отнести графические модели , представляю­щие различные изображения - схемы, графики, чертежи. Так, эскизу (упрощенному изображению) некоторого объекта в зна­чительной степени присущи эвристические черты, а в чертеже уже конкрети­зируются внутренние и внешние связи моделируе­мого объекта.

Промежуточными также являются и аналоговые модели . Они позволяют исследовать одни физические явления или математи­че­ские выражения посредством изучения других физических явле­ний, имеющих аналогичные математические модели.

Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом объекте и возможностей проек­тировщика, исследователя. По возрастанию степени соответст­вия реальности модели можно расположить в следующий ряд: эври­стические (образные) - математические - физические (экс­пери­ментальные).

Технические системы различаются по назначению, устрой­ст­ву и условиям функционирования. Следовательно, можно и нужно вносить соответствующие различия и в их модели.

В зависимости от целей исследования выделяют следующие модели:

Функциональные, предназначенные для изучения функцио­нального назначения элементов системы, внутренних связей и связей с другими системами;

Функционально-физические, предназначенные для изучения сущности и назначения физических явлений, используемых в системе, их взаимосвязей;

Модели процессов и явлений, таких как кинематические, проч­ностные, динамические и другие, предназначенные для иссле­дования тех или иных характеристик системы, обеспечиваю­щих ее эффективное функционирование.

Модели также подразделяют на простые и сложные, однород­ные и неоднородные, открытые и закрытые, статические и дина­мические, вероятностные и детерминированные.

Часто говорят о технической системе как простой или слож­ной, закрытой или открытой и т. п. В действительности же под­ра­зумевается не сама система, а возможный вид ее модели, ак­центи­руется особенность ее устройства или условий работы.

Четкого правила разделения систем на сложные ипростые не существует. Обычно признаком сложных систем служит много­об­разие выполняемых функций, большое число составных час­тей, разветвленный характер связей, тесная взаимосвязь с внеш­ней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определя­ется необходимыми для ее исследования затратами времени и средств, потребным уровнем квалификации, т. е. за­висит от кон­кретного случая и конкретного специалиста.

Подразделение систем на однородные и неоднородные произ­водится в соответствии с заранее выбранным призна­ком: исполь­зуемые физические явления, материалы, формы и т. д. При этом одна и та же система при разных подходах может быть и однород­ной, и неоднородной. Так, велосипед - однородная механическая система, поскольку использует механические способы передачи движения, но неоднородная по типам материалов, из которых из­готовлены отдельные части (резиновая шина, стальная рама, ко­жаное седло).

Все системы взаимодействуют с внешней средой, обменива­ются с нею сигналами, энергией, веществом. Системы относят к открытым , если их влиянием на окружающую среду или воз­дей­ствием внешних условий на их состояние и качество функ­циони­рования пренебречь нельзя. В противном случае системы рассмат­ривают какзакрытые , изолированные.

Динамические системы , в отличие отстатических , нахо­дятся в постоянном развитии, их состояние и характеристики изменяют­ся в процессе работы и с течением времени.

Характеристики вероятностных (иными словами,стохас­ти­ческих) систем случайным образом распределяются в про­странст­ве или меняются во времени. Это является следствием как случай­но, о распределения свойств материалов, геометриче­ских размеров и форм объекта, так и случайного характера воз­действия на него внешних нагрузок и условий. Характеристикидетерминирован­ных систем заранее известны и точно предска­зуемы.

Знание этих особенностей облегчает процесс моделирова­ния, так как позволяет выбрать вид модели, наилучшим образом соот­ветствующей заданным условиям.

Выбор модели того или иного вида основывается на выделе­нии в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или пред­ше­ствующим опытом. Наиболее часто в процессе моделирова­ния ориентируются на создание простой модели, поскольку это позво­ляет сэкономить время и средства на ее разработку. Од­нако повы­шение точности модели, как правило, связано с рос­том ее сложно­сти, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и по­требной точности и ука­зывает на предпочтительный вид мо­дели.