Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного растянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равновесия (фиг. 21.1). Отклонения вверх от положения равновесия мы обозначим через и предположим, что имеем дело с абсолютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умноженное на массу ускорение должно быть равно

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что . Нам предстоит решить уравнение

Фиг. 21.1. Грузик, подвешенный на пружинке. Простой пример гармонического осциллятора.

После этого мы вернемся к уравнению (21.2), в котором и содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начинали изучать механику. Мы решили его численно, чтобы найти движение. Численным интегрированием мы нашли кривую, которая показывает, что если частица в начальный момент выведена из равновесия, но покоится, то она возвращается к положению равновесия. Мы не следили за частицей после того, как она достигла положения равновесия, но ясно, что она на этом не остановится, а будет колебаться (осциллировать). При численном интегрировании мы нашли время возврата в точку равновесия: . Продолжительность полного цикла в четыре раза больше: «сек». Все это мы нашли численным интегрированием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее продифференцировать дважды, переходит в себя, умножившись на . (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: . Продифференцируем ее: , a . В начальный момент , , а начальная скорость равна нулю; это как раз те предположения, которые мы делали при численном интегрировании. Теперь, зная, что , найдем точное значение времени, при котором . Ответ: , или 1,57108. Мы ошиблись раньше в последнем знаке, потому что численное интегрирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет решением в этом случае? Может быть, мы учтем постоянные и , умножив на соответствующий множитель ? Попробуем. Пусть , тогда и . К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умножить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если есть решение уравнения, то после умножения обеих частей уравнения на производные тоже умножатся на и поэтому так же хорошо удовлетворит уравнению, как и . Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ускорение, в два раза больше прежней будет приобретенная скорость и за то же самое время грузик пройдет вдвое большее расстояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равновесия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравнением, то независимо от «силы» оно будет развиваться во времени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравнения. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

(Здесь - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозначать особой буквой.) Мы снабдили здесь индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что и . Наконец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если .

Теперь нужно понять физический смысл . Мы знаем, что косинус «повторяется» после того, как угол изменится на . Поэтому будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на . Величину часто называют фазой движения. Чтобы изменить на , нужно изменить на (период полного колебания); конечно, находится из уравнения . Это значит, что нужно вычислять для одного цикла, и все будет повторяться, если увеличить на ; в этом случае мы увеличим фазу на . Таким образом,

. (21.5)

Значит, чем тяжелее грузик, тем медленнее пружинка будет колебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожестче, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не говорит об амплитуде колебания. Амплитуду колебания, конечно, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Решение соответствует случаю, когда в начальный момент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например, улучить момент, когда уравновешенная пружинка покоится , и резко ударить по грузику; это будет означать, что в момент пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если - решение, то, войдя в комнату, где качается пружинка, в тот момент (назовем его «»), когда грузик проходит через положение равновесия , мы будем вынуждены заменить это решение другим. Следовательно, не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойством обладает, например, решение , где - какая-то постоянная. Далее, можно разложить называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифференциальным уравнением. Другие величины уравнением не определяются, а зависят от начальных условий. Постоянная служит мерой максимального отклонения груза и называется амплитудой колебания. Постоянную иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой и говорят, что фаза зависит от времени. Можно сказать, что - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным соответствуют движения с разными фазами. Вот это верно, а называть ли фазой или нет - уже другой вопрос.

Тела, которые при движении совершают гармонические ко­лебания, называют гармоническими осциляторами. Рассмотрим ряд примеров гармонических осциляторов.

Пример1. Пружинный маятник – это тело массой m , способное совершать колебания под действием силы упругости невесомой (m пружины  m тела ) пружины (рис.4.2).

Т

Рис.4.3. Физический маятник.

рением в системе пренебрегаем. При смещении тела на расстояние х от положе­ния равновесия О на него дейст­вует сила уп­ругости пружины, направленная к положению равновесия:
, гдеk - коэффициент упругости (жесткости) пружины. По второму закону Ньютона
. От­сюда
и, если обозначить
, тогда получим
дифференциальное урав­нение гармонических колебаний. Его решения имеют вид
либо
. Таким образом, колебания пружинного маятника - гармонические с циклической час­тотой
и периодом
.

Пример 2. Физический маятник - это твердое тело, совер­шаю­щее колебания под действием силы тяжести вокруг подвижной го­ризон­тальной оси, не совпадающей с его цен­тром тяжести С (рис. 4. 3). Ось проходит через точку О. Если маятник откло­нить от положения равновесия на малый угол  и отпус­тить, он будет совершать ко­лебания, следуя основному уравнению динамики вращательного движения твердого тела
, гдеJ - момент инерции маятника относительно оси, М ‑ момент силы, возвращающей физический маятник в поло­жение равно­весия. Он создается силой тяжести , ее момент равен
(l =ОС). В результате получаем
. Это дифференциальное уравнение колебаний для произвольных углов отклонения. При малых углах, когда
,
или, принимая
, получим дифференциальное уравнение колебания физического маятника
. Его решения имеют вид
или
. Таким образом, при малых отклонениях от положения равновесия физический маят­ник совершает гармонические колебания с циклической частотой
и периодом
.

Пример3. Математический маятник - это материальная точка с массой m (тяжелый шарик малых размеров), подвешенная на невесомой (по сравнению с m шарика), уп­ругой, нерастяжимой нити длинною l . Если вывести шарик из положения равновесия, отклонив его от вертикали на небольшой угол , а затем отпустить, он будет совершать колебания. Если рассматривать данную систему как физический маятник с моментом инерции материальной точки J = ml 2 , то из формул для физического маятника получим выражения для циклической частоты и периода колебаний математического маятника

,
.

4. 4. Затухающие колебания . @

В рассмотренных примерах гармонических колебаний единственной силой, действующей на материальную точку (тело), была квазиупругая сила F и не учитывались силы сопротивления, которые присутству­ют в лю­бой реальной системе. Поэтому рассмотренные колебания можно назвать идеальными незатухающими гармоническими колебаниями.

Наличие в реальной колебательной системе силы сопротивления среды при­во­дит к уменьшению энергии системы. Если убыль энергии не пополнять за счет работы внешних сил, колебания будут затухать. Затухающими называются колеба­ния с уменьшающейся во времени амплитудой.

Рассмотрим свободные затухающие колебания. При небольших скоростях сила сопротивления F C пропорциональна скорости v и обратно пропорциональна ей по направлению
, гдеr - коэффициент сопротивления среды. Используя второй закон Ньютона , получим дифференциальное уравнение затухающих колебаний
,
,
. Обозначим
,
. Тогда дифференциальное уравнение приобретает вид:

Рис.4.4. Зависимость смеще­ния и амплитуды затухаю­щих колебаний от времени.


.

Это дифференциальное уравнение затухающих колебаний. Здесь  0 - собственная частота колеба­ний системы, т.е. частота свободных колебаний при r=0,  - коэффициент зату­хания оп­ределяет скорость убывания амплитуды. Решениями этого уравнения при условии  0 являются

либо
.

График последней функции представлен на рис.4.4. Верхняя пунктирная линия дает график функции
, А 0 - амплитуда в начальный момент времени. Амплитуда во времени убывает по экспоненциальному закону,  - коэффициент зату­хания по величине обратен времени релакса­ции , т.е. вре­мени за которое амплитуда уменьшается в e раз, так как

,
, = 1, . Частота и период затухающих колебаний
,
; при очень малом сопротивлении среды ( 2  0 2) период колебаний практически ра­вен
. С ростом период колебаний увеличивается и при > 0 решение дифференциального уравнения показывает, что колебания не совершаются, а происходит монотонное движение системы к положению равновесия. Такое движение называют апериодическим.

Для характеристики скорости затухания колебаний служат еще два параметра: декремент затухания D и логарифмический декремент . Декремент затуха­ния показывает во сколько раз уменьшается амплитуда колебаний за время од­ного периода Т.

Н

Рис.4.5. Вид резонансных кривых.

атуральный логарифм от декремента затухания есть логарифмический декремент

Так как, то
, гдеN - число колебаний за время.

Гармоническим осциллятором называют частицу, совершающую одномерное движение под действием квазиупругой силы . Потенциальная энергия такой частицы имеет вид

Выразив в формуле (27.1) k через получим

В одномерном случае Поэтому уравнение Шрёдингера (см. (21.5)) для осциллятора выглядит следующим образом:

Полная энергия, осциллятора). В теории дифференциальных уравнений доказывается, что уравнение (27.2) имеет конечные, однозначные и непрерывные решения при значениях параметра Е, равных

На рис. 27.1 дана схема энергетических уровней гармонического осциллятора. Для наглядности уровни вписаны в кривую потенциальной энергии. Однако следует помнить, что в квантовой механике полная энергия не может быть представлена в виде суммы точно определенных энергий Т и U (см. последний абзац предыдущего параграфа).

Уровни энергии гармонического осциллятора являются эквидистантными, т. е. отстоящими друг от друга на одинаковое расстояние. Наименьшее возможное значение энергии равно . Это значение называется нулевой энергией.

Существование нулевой энергии подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Оказывается, что интенсивность рассеянного света по мере понижения температуры стремится не к нулю, а к некоторому конечному значению, указывающему на то, что и при абсолютном нуле колебания атомов в кристаллической решетке не прекращаются.

Квантовая механика позволяет вычислить вероятности различных переходов квантовой системы из одного состояния в другое. Подобные вычисления показывают, что для гармонического осциллятора возможны лишь переходы между соседними уровнями. При таких переходах квантовое число изменяется на единицу:

Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора.

Таким образом, для гармонического осциллятора существует правило отбора, выражаемое формулой (27.4).

Из правила (27.4) вытекает, что энергия гармонического осциллятора может изменяться только порциями /гto. Этот результат, получающийся естественным образом в квантовой механике, совпадает с тем весьма чужеродным для классической физики предположением, которое пришлось сделать Планку, чтобы вычислить испускательную способность абсолютно черного тела (см. § 7). Отметим, что Планк предполагал, что энергия гармонического осциллятора может быть лишь целой кратной На. В действительности же имеется еще нулевая энергия, существование которой было установлено только после создания квантовой механики.

F , пропорциональной смещению x :

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине , торсионный маятник и акустические системы. Среди немеханических аналогов гармонического осциллятора можно выделить электрический гармонический осциллятор (см. LC-цепь).

Пусть x - смещение материальной точки относительно её положения равновесия, а F - действующая на точку возвращающая сила любой природы вида

где k = const. Тогда, используя второй закон Ньютона , можно записать ускорение как

Амплитуда сокращается. Значит, она может иметь любое значение (в том числе и нулевое - это означает, что материальная точка покоится в положении равновесия). На синус также можно сократить, так как равенство должно выполняться в любой момент времени t . Таким образом, остаётся условие для частоты колебаний:

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

Типичным примером системы, в которой происходит простое гармоническое движение, является идеализированная система груз-пружина, в которой груз присоединён к пружине и находится на горизонтальной поверхности. Если пружина не сжата и не растянута, то на груз не действует никаких переменных сил и он находится в состоянии механического равновесия. Однако, если груз вывести из положения равновесия, пружина деформируется и с её стороны будет действовать сила, стремящаяся вернуть груз в положение равновесия. В случае системы груз-пружина такой силой является сила упругости пружины, которая подчиняется закону Гука :

где k имеет вполне конкретный смысл - это коэффициент жёсткости пружины.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его и стремящейся вернуть в начальную точку, то есть в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Если нет потерь энергии, груз будет колебаться как описано выше; такое движение является периодическим.

Простое гармоническое движение, показанное одновременно в реальном пространстве и в фазовом пространстве . Real Space - реальное пространство; Phase Space - фазовое пространство; velocity - скорость; position - положение (позиция).

В случае вертикально подвешенного на пружине груза, наряду с силой упругости, действует сила тяжести, то есть суммарно сила составит

Измерения частоты (или периода) колебаний груза на пружине используются в устройствах для определения массы тела - так называемых массметрах , применяемых на космических станциях, когда весы не могут функционировать из-за невесомости.

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерную проекцию универсального движения по окружности.

Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной , даётся формулой

где g - ускорение свободного падения. Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от g , поэтому, при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

где I - момент инерции ; в данном случае I = m ℓ 2 . Небольшие углы реализуются в условиях, когда амплитуда колебаний значительно меньше длины стержня.

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

При рассмотрении осциллятора с затуханием за основу берётся модель консервативного осциллятора, в которую добавляется сила вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и прямо пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Используя второй закон Ньютона, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы стрелка успокаивалась максимально быстро для считывания его показаний.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; теоретически, со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя, формально, свободные колебания продолжаются бесконечно долго).

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.

Гармонический осциллятор

Гармони́ческий осцилля́тор (в классической механике) - система , которая при смещении из положения равновесия испытывает действие возвращающей силы F , пропорциональной смещению x (согласно закону Гука):

где k - коэффициент жёсткости системы.

Если F - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором . Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), , торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Свободные колебания

Консервативный гармонический осциллятор

В качестве модели консервативного гармонического осциллятора возьмём груз массы m , закреплённый на пружине жёсткостью k .

Пусть x - смещение груза относительно положения равновесия. Тогда, согласно закону Гука, на него будет действовать возвращающая сила:

тогда полная энергия имеет постоянное значение

Простое гармоническое движение - это движение простого гармонического осциллятора , периодическое движение, которое не является ни вынужденным , ни затухающим . Тело в простом гармоническом движении подвергается воздействию единственной переменной силы , которая по модулю прямо пропорциональна смещению x от положения равновесия и направлена в обратную сторону.

Это движение является периодическим: тело колеблется около положения равновесия по синусоидальному закону. Каждое последующее колебание такое же, как и предыдущее, и период , частота и амплитуда колебаний остаются постоянными. Если принять, что положение равновесия находится в точке с координатой, равной нулю, то смещение x тела от положения равновесия в любой момент времени даётся формулой:

где A - амплитуда колебаний, f - частота, φ - начальная фаза.

Частота движения определяется характерными свойствами системы (например, массой движущегося тела), в то время как амплитуда и начальная фаза определяются начальными условиями - перемещением и скоростью тела в момент начала колебаний. Кинетическая и потенциальная энергии системы также зависят от этих свойств и условий.

Простое гармоническое движение может быть математическими моделями различных видов движения, таких как колебание пружины . Другими случаями, которые могут приближённо рассматриваться как простое гармоническое движение, являются движение маятника и вибрации молекул.

Простое гармоническое движение является основой некоторых способов анализа более сложных видов движения. Одним из таких способов является способ, основанный на преобразовании Фурье , суть которого сводится к разложению более сложного вида движения в ряд простых гармонических движений.

F - возвращающая сила, x - перемещение груза (деформация пружины), k - коэффициент жёсткости пружины.

Любая система, в которой происходит простое гармоническое движение, обладает двумя ключевыми свойствами:

  1. Когда система выведена из состояния равновесия, должна существовать возвращающая сила, стремящаяся вернуть систему в равновесие.
  2. Возвращающая сила должна в точности или приближённо быть пропорциональна перемещению.

Система груз-пружина удовлетворяет обоим этим условиям.

Однажды смещённый груз подвергается действию возвращающей силы, ускоряющей его, и стремящейся вернуть в начальную точку, то есть, в положение равновесия. По мере того, как груз приближается к положению равновесия, возвращающая сила уменьшается и стремится к нулю. Однако в положении x = 0 груз обладает некоторым количеством движения (импульсом), приобретённым благодаря действию возвращающей силы. Поэтому груз проскакивает положение равновесия, начиная снова деформировать пружину (но уже в противоположном направлении). Возвращающая сила будет стремиться замедлить его, пока скорость не станет равной нулю; и сила вновь будет стремиться вернуть груз в положение равновесия.

Пока в системе нет потерь энергии, груз будет колебаться как описано выше; такое движение называется периодическим.

Дальнейший анализ покажет, что в случае системы груз-пружина движение является простым гармоническим.

Динамика простого гармонического движения

Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m  d²x /dt ² ) и закон Гука (F = −kx , как описано выше), имеем линейное дифференциальное уравнение второго порядка:

m - масса тела, x - его перемещение относительно положения равновесия, k - постоянная (коэффициент жёсткости пружины).

Решение этого дифференциального уравнения является синусоидальным ; одно из решений таково:

где A , ω и φ - постоянные величины, и положение равновесия принимается за начальное. Каждая из этих постоянных представляет собой важное физическое свойство движения: A - это амплитуда, ω = 2πf - круговая частота , и φ - начальная фаза.

Универсальное движение по окружности

Простое гармоническое движение в некоторых случаях можно рассматривать как одномерная проекция универсального движения по окружности. Если объект движется с постоянной угловой скоростью ω по окружности радиуса r , центром которой является начало координат плоскости x − y , то такое движение вдоль каждой из координатных осей является простым гармоническим с амплитудой r и круговой частотой ω .

Груз как простой маятник

В приближении малых углов движение простого маятника является близким к простому гармоническому. Период колебаний такого маятника, прикреплённого к стержню длиной с ускорением свободного падения g даётся формулой

Это показывает, что период колебаний не зависит от амплитуды и массы маятника, но зависит от ускорения свободного падения g , поэтому при той же самой длине маятника, на Луне он будет качаться медленнее, так как там слабее гравитация и меньше значение ускорения свободного падения.

Указанное приближение является корректным только при небольших углах отклонения, поскольку выражение для углового ускорения пропорционально синусу координаты:

I - момент инерции ; в данном случае I = m ℓ 2 .

что делает угловое ускорение прямо пропорциональным углу θ , а это удовлетворяет определению простого гармонического движения.

Затухающий гармонический осциллятор

Взяв за основу ту же модель, добавим в неё силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Здесь введено обозначение: . Коэффициент носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

, где - частота свободных колебаний. , где

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдёт до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы прочитать его показания можно было максимально быстро.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью . Добротность обычно обозначают буквой . По определению, добротность равна:

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; со временем он пересечёт положение равновесия неограниченное количество раз. Добротность, меньшая или равная 0,5, соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной амплитуда колебаний оказывается примерно в раз больше, чем при возбуждении на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в раз, умноженному на .

В случае колебательного движения затухание ещё характеризуют такими параметрами, как:

  • Время жизни колебаний (оно же время затухания , оно же время релаксации ) τ - время, за которое амплитуда колебаний уменьшится в e раз.
Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

Вынужденные колебания

Колебания осциллятора называют вынужденными, когда на него производится некоторое дополнительное воздействие извне. Это воздействие может производиться различными средствами и по различным законам. Например, силовым возбуждением называется воздействие на груз силой, зависящей только от времени по определённому закону. Кинематическим возбуждением называют воздействие на осциллятор движением точки закрепления пружины по заданному закону. Возможно также воздействие трением, когда, например, среда, с которой груз испытывает трение, совершает движение по заданному закону.