Сегодня мы подробно рассмотрим важную тему - дадим определение броуновскому движению маленьких кусочков материи в жидкости или газе.

Карта и координаты

Некоторые школьники, замученные скучными уроками, не понимают, зачем изучать физику. А между тем, именно эта наука когда-то позволила открыть Америку!

Начнем издалека. Древним цивилизациям Средиземноморья в каком-то смысле повезло: они развивались на берегу закрытого внутреннего водоема. Средиземное море потому так и называется, что оно со всех сторон окружено сушей. И древние путешественники могли довольно далеко продвинуться со своей экспедицией, не теряя из вида берегов. Очертания суши помогали ориентироваться. И первые карты составлялись скорее описательно, чем географически. Благодаря этим относительно недалеким плаваниям греки, финикийцы и египтяне хорошо научились строить корабли. А где лучшее оборудование - там и стремление раздвинуть границы своего мира.

Поэтому в один прекрасный день европейские державы решили выйти в океан. Во время плавания по бескрайним просторам между материками моряки долгие месяцы видели только воду, и им надо было как-то ориентироваться. Определить свои координаты помогло изобретение точных часов и качественного компаса.

Часы и компас

Изобретение маленьких ручных хронометров очень выручило мореплавателей. Чтобы точно определить, где они находятся, им надо было иметь простейший инструмент, который измерял высоту солнца над горизонтом, и знать, когда именно полдень. А благодаря компасу капитаны судов знали, куда они направляются. И часы, и свойства магнитной стрелки изучали и создавали физики. Благодаря этому европейцам был открыт весь мир.

Новые континенты представляли собой terra incognita, неизведанные земли. На них росли странные растения и водились непонятные животные.

Растения и физика

Все естествоиспытатели цивилизованного мира ринулись изучать эти новые странные экологические системы. И конечно же, они стремились извлечь из них выгоду.

Роберт Броун был английским ботаником. Он совершал поездки в Австралию и на Тасманию, собирал там коллекции растений. Уже дома, в Англии, он много работал над описанием и классификацией привезенного материала. И ученый этот был очень дотошным. Однажды, наблюдая за движением пыльцы в соке растений, он заметил: мелкие частицы постоянно совершают хаотические зигзагообразные перемещения. В этом и состоит определение броуновского движения мелких элементов в газах и жидкостях. Благодаря открытию потрясающий ботаник вписал свое имя в историю физики!

Броун и Гуи

В европейской науке так принято: называть эффект или явление именем того, кто его обнаружил. Но часто это бывает случайно. А вот человек, который описывает, открывает важность или более подробно исследует физический закон, оказывается в тени. Так случилось и с французом Луи Жоржем Гуи. Именно он дал определение броуновскому движению (7 класс о нем точно не слышит, когда изучает эту тему по физике).

Исследования Гуи и свойства броуновского движения

Французский экспериментатор Луи Жорж Гуи наблюдал движение разного типа частиц в нескольких жидкостях, в том числе и в растворах. Наука того времени уже умела точно определять размер кусочков вещества до десятых долей микрометра. Исследуя, что такое броуновское движение (определение в физике этому явлению дал именно Гуи), ученый понял: интенсивность перемещения частиц увеличивается, если их поместить в менее вязкую среду. Будучи экспериментатором широкого спектра, он подвергал взвесь действию света и электромагнитных полей различной мощности. Ученый выяснил, что эти факторы никак не влияют на хаотические зигзагообразные скачки частиц. Гуи однозначно показал, что доказывает броуновское движение: тепловое перемещение молекул жидкости или газа.

Коллектив и масса

А теперь подробнее опишем механизм зигзагообразных скачков небольших кусочков материи в жидкости.

Любое вещество состоит из атомов или молекул. Эти элементы мира очень маленькие, ни один оптический микроскоп не способен их увидеть. В жидкости они все время колеблются и перемещаются. Когда любая видимая частица попадает в раствор, ее масса в тысячи раз больше одного атома. Броуновское движение молекул жидкости совершается хаотически. Но тем не менее все атомы или молекулы представляют собой коллектив, они связаны друг с другом, как люди, которые взялись за руки. Поэтому иногда так случается, что атомы жидкости с одной стороны частицы движутся так, что «давят» на нее, при этом с другой стороны от частицы создается менее плотная среда. Поэтому пылинка перемещается в пространстве раствора. В другом месте коллективное движение молекул жидкости случайно действует на другую сторону более массивного компонента. Именно так и совершается броуновское движение частиц.

Время и Эйнштейн

Если вещество обладает ненулевой температурой, его атомы совершают тепловые колебания. Поэтому даже в очень холодной или переохлажденной жидкости существует броуновское движение. Эти хаотические перескоки маленьких взвешенных частиц никогда не прекращаются.

Альберт Эйнштейн, пожалуй, самый знаменитый ученый двадцатого века. Всем, кто хоть сколько-нибудь интересуется физикой, известна формула E = mc 2 . Также многие могут вспомнить о фотоэффекте, за который ему дали Нобелевскую премию, и о специальной теории относительности. Но мало кто знает, что Эйнштейн разработал формулу для броуновского движения.

На основании молекулярно-кинетической теории ученый вывел коэффициент диффузии взвешенных частиц в жидкости. И произошло это в 1905 году. Формула выглядит так:

D = (R * T) / (6 * N A * a * π * ξ),

где D - искомый коэффициент, R - это универсальная газовая постоянная, T — абсолютная температура (выражается в Кельвинах), N A — постоянная Авогадро (соответствует одному молю вещества, или примерно 10 23 молекул), a — приблизительный средний радиус частиц, ξ — динамическая вязкость жидкости или раствора.

А уже в 1908 году французский физик Жан Перрен со своими студентами экспериментально доказали верность вычислений Эйнштейна.

Одна частица в поле воин

Выше мы описывали коллективное воздействие среды на много частиц. Но и один чужеродный элемент в жидкости может дать некоторые закономерности и зависимости. Например, если наблюдать за броуновской частицей долгое время, то можно зафиксировать все ее перемещения. И из этого хаоса возникнет стройная система. Среднее продвижение броуновской частицы вдоль какого-то одного направления пропорционально времени.

При экспериментах над частицей в жидкости были уточнены следующие величины:

  • постоянная Больцмана;
  • число Авогадро.

Помимо линейного движения, также свойственно хаотическое вращение. И среднее угловое смещение также пропорционально времени наблюдения.

Размеры и формы

После таких рассуждений может возникнуть закономерный вопрос: почему этот эффект не наблюдается для больших тел? Потому что когда протяженность погруженного в жидкость объекта больше определенной величины, то все эти случайные коллективные «толчки» молекул превращаются в постоянное давление, так как усредняются. И на тело уже действует общая Архимеда. Таким образом, большой кусок железа тонет, а металлическая пыль плавает в воде.

Размер частиц, на примере которых выявляется флуктуация молекул жидкости, не должен превышать 5 микрометров. Что касается объектов с большими размерами, то здесь этот эффект заметен не будет.

БРОУНОВСКОЕ ДВИЖЕНИЕ (брауновское движение) - беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Исследовано в 1827 P. Броуном (Браун; R. Brown), к-рый наблюдал в микроскоп движение цветочной пыльцы, взвешенной в воде. Наблюдаемые частицы (броуновские) размером ~1 мкм и менее совершают неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Интенсивность Б. д. не зависит от времени, но возрастает с ростом темп-ры среды, уменьшением её вязкости и размеров частиц (независимо от их хим. природы). Полная теория Б. д. была дана А. Эйнштейном (A. Einstein) и M. Смолуховским (M. Smoluchowski) в 1905-06.

Причины Б. д.- тепловое движение молекул среды и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул, т. е. Б. д. обусловлено флуктуациями давления. Удары молекул среды приводят частицу в беспорядочное движение: скорость её быстро меняется по величине и направлению. Если фиксировать положение частиц через небольшие равные промежутки времени, то построенная таким методом траектория оказывается чрезвычайно сложной и запутанной (рис.).

Б. д.- наиб. наглядное эксперим. подтверждение представлений молекулярно-кинетич. теории о хаотич. тепловом движении атомов и молекул. Если промежуток наблюдения т достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то ср. квадрат проекции её смещения на к--л. ось (в отсутствие др. внеш. сил) пропорционален времени т (закон Эйнштейна):

где D - коэф. диффузии броуновской частицы. Для сферич. частиц радиусом a: (T - абс. темп-ра,- динамич. вязкость среды). При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших). Ф-ла для коэф. D основана на применении Стокса закона для гидродинамич. сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная N А .

Кроме поступательного Б. д., существует также вращательное Б. д. - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращат. Б. д. ср. квадратичное угловое смещение частицы пропорционально времени наблюдения

где D вp - коэф. диффузии вращат. Б. д., равный для сферич. частицы: . Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Б. д.

Теория Б. д. исходит из представления о движении частицы под влиянием "случайной" обобщённой силы f (<), к-рая описывает влияние ударов молекул и в среднем равна нулю, систематич. внеш. силы X , к-рая может зависеть от времени, и силы трения -, возникающей при движении частицы в среде со скоростью . Ур-ние случайного движения броуновской частицы - Ланжевена уравнение - имеет вид:

где т - масса частицы (или, если х - угол, её момент инерции), h - коэф. трения при движении частицы в среде. Для достаточно больших промежутков времени инерцией частицы (т. е. членом) можно пренебречь и, проинтегрировав ур-ние Ланжевена при условии, что ср. произведение импульсов случайной силы для неперекрывающихся промежутков времени равно нулю, найти ср. квадрат флуктуации , т. е. вывести соотношение Эйнштейна. В более общей задаче теории Б. д. последовательность значений координат и импульсов частиц через равные промежутки времени рассматривается как марковский случайный процесс , что является др. формулировкой предположения о независимости толчков, испытываемых частицами в разные неперекрывающиеся промежутки времени. В этом случае вероятность состояния х в момент t полностью определяется вероятностью состояния x 0 в момент t 0 и можно ввести ф-цию - плотность вероятности перехода из состояния x 0 в состояние, для к-рого х лежит в пределах х, x+dx в момент времени t . Плотность вероятности удовлетворяет интегральному ур-нию Смолуховского, к-рое выражает отсутствие "памяти" о нач. состоянии для случайного марковского процесса. Это ур-ние для многих задач теории Б. д. можно свести к дифференц. Фоккера - Планка уравнению в частных производных - обобщённому ур-нию диффузии в фазовом пространстве . Поэтому решение задач теории Б. д. можно свести к интегрированию Фоккера - Планка ур-ния при определ. граничных и нач. условиях. Матем. моделью Б. д. является винеровский случайный процесс .

Броуновское движение трёх частиц гуммигута в воде (по Перрену). Точками отмечены положения частиц через каждые 30 с. Радиус частиц 0,52 мкм, расстояния между делениями сетки 3,4 мкм.

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Грачева. Физика (10-11) (баз., углубл.)

Броуновское движение

Разбираемся, что такое броуновское движение .

У нас появился новый формат! Теперь статью можно прослушать

1. Частицы

Нам известно, что все вещества состоят из огромного числа очень и очень маленьких частиц, которые находятся в непрерывном и беспорядочном движении. Откуда нам это стало известно? Как учёные смогли узнать о существовании настолько маленьких частиц, которые ни в один оптический микроскоп невозможно увидеть? И уж тем более, как им удалось выяснить, что эти частицы находятся в непрерывном и беспорядочном движении? В этом учёным помогли разобраться два явления - броуновское движение и диффузия . Об этих явлениях мы и поговорим более подробно.

2. Броуновское движение

Английский учёный Роберт Броун не был физиком или химиком. Он был ботаником. И он совсем не ожидал, что откроет столь важное для физиков и химиков явление. И он не мог даже подозревать о том, что в своих довольно простых экспериментах он будет наблюдать результат хаотичного движения молекул. А это было именно так.

Что же это были за эксперименты? Они были почти такие же, что делают ученики на уроках биологии, когда с помощью микроскопа пытаются рассмотреть, например, клетки растений. Роберт Броун хотел рассмотреть в микроскоп пыльцу растений. Рассматривая зёрна пыльцы в капле воды, он заметил, что зёрна не находятся в покое, а непрерывно дёргаются, будто они живые. Наверное, сначала он так и подумал, но будучи учёным, конечно же отбросил эту мысль. Ему не удалось понять, почему эти зёрна пыльцы ведут себя таким странным образом, но он описал всё увиденное, и это описание попало в руки физиков, которые тут же поняли, что перед ними наглядное доказательство непрерывного и беспорядочного движения частиц.

Объясняется это движение, описанное Броуном, следующим образом: зёрна пыльцы достаточно велики, так что мы можем увидеть их в обычный микроскоп, а вот молекулы воды мы не видим, но, в то же время, зёрна пыльцы достаточно малы, чтобы из-за ударов по ним молекул воды, окружающих их со всех сторон, они смещались то в одну, то в другую сторону. То есть этот хаотичный «танец» зёрен пыльцы в капле воды показывал, что молекулы воды непрерывно и беспорядочно с разных сторон ударяют по зёрнам пыльцы и смещают их. С тех пор непрерывное и хаотичное движение мелких твёрдых частичек в жидкости или газе стали называть броуновским движением . Важнейшей особенностью этого движения является то, что оно непрерывное, то есть не прекращается никогда.

3. Диффузия

Диффузия - это ещё один пример наглядного доказательства непрерывного и беспорядочного движения молекул. И заключается оно в том, что газообразные вещества, жидкости и даже твёрдые вещества, хотя и намного медленнее, могут самоперемешиваться друг с другом. К примеру, запахи различных веществ распространяются в воздухе даже в отсутствие ветра именно благодаря этому самоперемешиванию. Или вот ещё пример - если в стакан с водой бросить несколько кристаллов марганцовки и, не перемешивая воду, подождать около суток, то мы увидим, что вся вода в стакане будет окрашена равномерно. Это происходит из-за непрерывного движения молекул, которые меняются местами, и вещества постепенно перемешиваются самостоятельно без внешнего воздействия.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

4. Свойства броуновского движения и диффузии

Когда учёные-физики стали более подробно рассматривать явление, описанное Робертом Броуном, они заметили, что, как и диффузию, этот процесс можно ускорить, повышая температуру. То есть в горячей воде и окрашивание с помощью марганцовки будет происходить быстрее, и движение мелких твёрдых частичек, к примеру, графитовой крошки или тех же зёрен пыльцы, происходит с большей интенсивностью. Это подтверждало тот факт, что скорость хаотичного движения молекул напрямую зависит от температуры. Не вдаваясь в подробности, перечислим, от чего может зависеть и интенсивность броуновского движения, и скорость протекания диффузии:

1) от температуры;

2) от рода вещества, в котором эти процессы происходят;

3) от агрегатного состояния.

То есть при равной температуре диффузия газообразных веществ протекает значительно быстрее, чем жидкостей, не говоря уже о диффузии твёрдых тел, которая происходит настолько медленно, что её результат, и то очень незначительный, можно заметить или при очень высоких температурах, или за очень большое время - годы или даже десятилетия.

5. Практическое применение

Диффузия и без практического применения имеет огромное значение не только для человека, но и для всего живого на Земле: именно благодаря диффузии в нашу кровь через лёгкие попадает кислород, именно посредством диффузии растения добывают из почвы воду, поглощают углекислый газ из атмосферы и выделяют в ней кислород, а рыбы дышат в воде кислородом, который из атмосферы посредством диффузии попадает в воду.

Явление диффузии применяется и во многих областях техники, причём именно диффузии в твёрдых телах. К примеру, есть такой процесс - диффузионная сварка. В этом процессе детали очень сильно прижимаются друг к другу, нагреваются до 800 °C и посредством диффузии происходит их соединение друг с другом. Именно благодаря диффузии земная атмосфера, состоящая из большого количества различных газов, не разделяется на отдельные слои по составу, а везде примерно однородна - а ведь будь иначе, мы вряд ли смогли бы дышать.

Существует огромное количество примеров влияния диффузии на нашу жизнь и на всю природу, которые может найти любой из вас, если захочет. А вот о применении броуновского движения мало что можно сказать, кроме того, что сама теория, которая описывает это движение, может применяться и в других, казалось бы совершенно не связанных с физикой, явлениях. К примеру, эту теорию используют для описания случайных процессов, с применением большого количества данных и статистики - таких, как изменение цен. Теория броуновского движения используется для создания реалистичной компьютерной графики. Интересно, что человек, заблудившийся в лесу движется примерно так же, как и броуновские частички - блуждает из стороны в сторону, многократно пересекая свою траекторию.

1) Рассказывая классу о броуновском движении и диффузии, необходимо сделать акцент на том, что эти явления не доказывают факт существования молекул, но доказывают факт их движения и то, что оно беспорядочное - хаотичное.

2) Обязательно обратите особое внимание на то, что это непрерывное движение, зависящее от температуры, то есть тепловое движение, которое не может прекратиться никогда.

3) Продемонстрируйте диффузию с помощью воды и марганцовки, дав задание наиболее любознательным ребятам провести подобный эксперимент в домашних условиях и делая фотографии воды с марганцовкой через каждый час-два в течение дня (в выходной дети это с удовольствием сделают, а фото пришлют вам). Лучше, если в подобном эксперименте будет две ёмкости с водой - холодной и горячей, чтобы можно было продемонстрировать наглядно зависимость скорости диффузии от температуры.

4) Попробуйте измерить скорость диффузии в классе с помощью, к примеру, дезодоранта - в одном конце класса распыляем небольшое количество аэрозоля, а в 3-5 метрах от этого места ученик с секундомером фиксирует время, через которое он почувствует запах. Это и весело, и интересно, и запомнится детьми надолго!

5) Обсудите с детьми понятие хаотичности и тот факт, что даже в хаотических процессах учёные находят некие закономерности.

Броуновское движение


Из Броуновское движение (энциклопедия Элементы)

Во второй половине ХХ века в научных кругах разгорелась нешуточная дискуссия о природе атомов. На одной стороне выступали неопровержимые авторитеты, такие как Эрнст Мах (см. Ударные волны), который утверждал, что атомы — суть просто математические функции, удачно описывающие наблюдаемые физические явления и не имеющие под собой реальной физической основы. С другой стороны, ученые новой волны — в частности, Людвиг Больцман (см. Постоянная Больцмана) — настаивали на том, что атомы представляют собой физические реалии. И ни одна из двух сторон не сознавала, что уже за десятки лет до начала их спора получены экспериментальные результаты, раз и навсегда решающие вопрос в пользу существования атомов как физической реальности, — правда, получены они в смежной с физикой дисциплине естествознания ботаником Робертом Броуном.

Еще летом 1827 года Броун, занимаясь изучением поведения цветочной пыльцы под микроскопом (он изучал водную взвесь пыльцы растения Clarkia pulchella ), вдруг обнаружил, что отдельные споры совершают абсолютно хаотичные импульсные движения. Он доподлинно определил, что эти движения никак не связаны ни с завихрениями и токами воды, ни с ее испарением, после чего, описав характер движения частиц, честно расписался в собственном бессилии объяснить происхождение этого хаотичного движения. Однако, будучи дотошным экспериментатором, Броун установил, что подобное хаотичное движение свойственно любым микроскопическим частицам, — будь то пыльца растений, взвеси минералов или вообще любая измельченная субстанция.

Лишь в 1905 году не кто иной, как Альберт Эйнштейн, впервые осознал, что это таинственное, на первый взгляд, явление служит наилучшим экспериментальным подтверждением правоты атомной теор ии строения вещества. Он объяснил его примерно так: взвешенная в воде спора подвергается постоянной «бомбардировке» со стороны хаотично движущихся молекул воды. В среднем, молекулы воздействуют на нее со всех сторон с равной интенсивностью и через равные промежутки времени. Однако, как бы ни мала была спора, в силу чисто случайных отклонений сначала она получает импульс со стороны молекулы, ударившей ее с одной стороны, затем — со стороны молекулы, ударившей ее с другой и т. д. В результате усреднения таких соударений получается, что в какой-то момент частица «дергается» в одну сторону, затем, если с другой стороны ее «толкнуло» больше молекул — в другую и т. д. Использовав законы математической статистики и молекулярно-кинетической теор ии газов, Эйнштейн вывел уравнение, описывающее зависимость среднеквадратичного смещения броуновской частицы от макроскопических показателей. (Интересный факт: в одном из томов немецкого журнала «Анналы физики» (Annalen der Physik ) за 1905 год были опубликованы три статьи Эйнштейна: статья с теор етическим разъяснением броуновского движения, статья об основах специальной теор ии относительности и, наконец, статья с описанием теор ии фотоэлектрического эффекта . Именно за последнюю Альберт Эйнштейн был удостоен Нобелевской премии по физике в 1921 году.)

В 1908 году французский физик Жан Батист Перрен (Jean-Baptiste Perrin, 1870-1942) провел блестящую серию опытов, подтвердивших правильность эйнштейновского объяснения феномена броуновского движения. Стало окончательно ясно, что наблюдаемое «хаотичное» движение броуновских частиц — следствие межмолекулярных соударений. Поскольку «полезные математические условности» (по Маху) не могут привести к наблюдаемым и совершенно реальным перемещениям физических частиц, стало окончательно ясно, что спор о реальности атомов окончен: они существуют в природе. В качестве «призовой игры» Перрену досталась выведенная Эйнштейном формула, которая позволила французу проанализировать и оценить среднее число атомов и/или молекул, соударяющихся с взвешенной в жидкости частицей за заданный промежуток времени и, через этот показатель, рассчитать молярные числа различных жидкостей. В основе этой идеи лежал тот факт, что в каждый данный момент времени ускорение взвешенной частицы зависит от числа соударений с молекулами среды (см. Законы механики Ньютона), а значит, и от числа молекул в единице объема жидкости. А это не что иное, как число Авогадро (см. Закон Авогадро) — одна из фундаментальных постоянных, определяющих строение нашего мира.

Из Броуновское движение В любой среде существуют постоянные микроскопические флуктуации давления. Они, воздействуя на помещенные в среду частицы, приводят к их случайным перемещениям. Это хаотическое движение мельчайших частиц в жидкости или газе называется броуновским движением, а сама частица - броуновской.

Броуновское движение

Ученицы 10 "В" класса

Онищук Екатерины

Понятие Броуновского движения

Закономерности Броуновского движения и применение в науке

Понятие Броуновского движения с точки зрения теории Хаоса

Движение бильярдного шарика

Интеграция детермированных фракталов и хаос

Понятие броуновского движения

Броуновское движение, правильнее брауновское движение, тепловое движение частиц вещества (размерами в нескольких мкм и менее), находящихся во взвешенном состоянии в жидкости или в газе частиц. Причиной броуновского движения является ряд не скомпенсированных импульсов, которые получает броуновская частица от окружающих ее молекул жидкости или газа. Открыто Р. Броуном (1773 - 1858) в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.

Последовательное объяснение Броуновского движения было дано А. Эйнштейном и М. Смолуховским в 1905-06 на основе молекулярно-кинетической теории. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате "бомбардировки" молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. При наблюдении Броуновского движения фиксируется (см. Рис. 1) положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.


Броуновское движение частицы гуммигута в воде (Рис.1)

Закономерности Броуновского движения

Закономерности Броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Общая картина Броуновского движения описывается законом Эйнштейна для среднего квадрата смещения частицы

вдоль любого направления х. Если за время между двумя измерениями происходит достаточно большое число столкновений частицы с молекулами, то пропорционально этому времени t: = 2D

Здесь D - коэффициент диффузии, который определяется сопротивлением, оказываемым вязкой средой движущейся в ней частице. Для сферических частиц радиуса, а он равен:

D = kT/6pha, (2)

где к - Больцмана постоянная, Т - абсолютная температура, h - динамическая вязкость среды. Теория Броунского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Случайный характер силы означает, что её действие за интервал времени t 1 совершенно не зависит от действия за интервал t 2 , если эти интервалы не перекрываются. Средняя за достаточно большое время сила равна нулю, и среднее смещение броуновской частицы Dc также оказывается нулевым. Выводы теории Броуновского движения блестяще согласуются с экспериментом, формулы (1) и (2) были подтверждены измерениями Ж. Перрена и Т. Сведберга (1906). На основе этих соотношений были экспериментально определены постоянная Больцмана и Авогадро число в согласии с их значениями, полученными др. методами. Теория Броуновского движения сыграла важную роль в обосновании статистической механики. Помимо этого, она имеет и практическое значение. Прежде всего, Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Понятие Броуновского движения с точки зрения теории Хаоса

Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно, этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя.

Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера. Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как, например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато.

Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА

Любой, кто когда-либо брал в руки кий для бильярда, знает, что ключ к игре - точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!

Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола - это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является, основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня, словом фрактал.

ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте, попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора (слева). Необходимо сделать ствол потолще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.