ЭФФЕКТ МЁССБАУЭРА
и его применение в химии

Открытое в 1958 г. немецким физиком Рудольфом Людвигом Мёссбауэром новое явление – резонансное поглощение гамма-квантов атомными ядрами твердых тел без изменения внутренней энергии тела (или без потери части энергии кванта на отдачу ядра в твердом теле) – получило название эффекта Мёссбауэра и привело к созданию совершенно нового направления исследований в науке. Основными областями применения этого эффекта стали физика твердого тела и химия.

Предыстория вопроса

Идейные основы гамма-резонансной спектроскопии начали складываться давно, и на ее развитие, конечно, оказывали влияние фундаментальные представления оптической спектроскопии, в особенности успехи в области так называемой резонансной флуоресценции.
С 1850-х гг. было известно, что некоторые газы, жидкости и твердые тела (например, фтористые соединения) поглощают электромагнитное излучение (обычно видимый свет) и немедленно вновь его излучают (явление получило название флуоресценции). В специальном случае, известном как резонансная флуоресценция, поглощаемое и испускаемое излучения обладают одинаковыми энергией, длиной волны и частотой.
Первые предположения о существовании резонансного рассеяния в атомах появились в работах английского физика Дж.У.Рэлея, а первые эксперименты в этом направлении осуществил известный американский физик-экспериментатор Р.У.Вуд в 1902–1904 гг. Для объяснения резонансного рассеяния он применил механические аналогии.
Явление резонансной флуоресценции было хорошо объяснено пришедшей на смену старым представлениям теорией Н.Бора (квантовая модель атома). Атом, переходящий из возбужденного состояния В в основное состояние А , испускает фотон строго определенной частоты. Когда такой фотон проходит через газ, состоящий из тех же атомов, что и излучатель, он может поглотиться, вызвав переход одного из атомов мишени в состояние В . Через небольшой промежуток времени этот возбужденный атом мишени в свою очередь распадается, испуская фотон той же частоты. Таким образом, первичное и вторичное излучение имеют одинаковую частоту, однако процессы поглощения и последующего испускания фотона независимы, и между падающей и испускаемой волнами не существует определенного фазового соотношения.
Многие стороны явления резонансного излучения были правильно описаны на основе теории Бора и начавшей тогда развиваться квантовой механики. Полное описание процессов испускания, поглощения и резонансной флуоресценции было осуществлено несколько позднее, в конце 1920-х – начале 1930-х гг. немецкими физиками В.Ф.Вайскопфом и Ю.П.Вигнером.
Мысль о том, что энергетические уровни ядер подобны электронным уровням атомов и переходы между ними по постулату Бора сопровождаются излучением или поглощением, впервые прозвучала в работах английского физика Ч.Д.Эллиса в начале 1920-х гг. В конце 1920-х гг. поисками соответствующей ядерной резонансной флуоресценции занялся швейцарский фотохимик Вернер Кун, с 1927 г. работавший в Германии. Он показал, что явления атомной и ядерной резонансной флуоресценции кажутся чрезвычайно сходными, однако между ними есть существенные различия, делающие опыты на ядрах гораздо более сложными.
В результате лишь в 1950 г. ученым удалось наконец впервые осуществить успешный эксперимент на ядрах золота-198 и разобраться в тех препятствиях, которые существовали на этом пути. Окончательно эта проблема была решена лишь Мёссбауэром.

Открытие Мёссбауэра

В чем именно заключалась проблема и как она была решена Мёссбауэром, будет более очевидно, если обратиться к структуре ядра.
Среди множества теоретических построений привлекает к себе внимание стереотип модели атома Бора – «оболочечная» модель атомного ядра М.Гёпперт-Майер и Х.Йенсена, лауреатов Нобелевской премии по физике за 1963 г. Согласно этой модели нуклоны в ядре располагаются на определенных энергетических уровнях, преимущественно парами с антипараллельными спинами (принцип Паули), а переходы между уровнями сопровождаются испусканием или поглощением гамма-квантов. В отличие от электронных уровней состояний атомов или молекул возбужденные состояния ядер живут недолго (порядка характерного «ядерного времени» ~10 –23 с), и, значит, неопределенность в энергии уровней должна быть очень большой в согласии с принципом неопределенности Гейзенберга .
Все это имело бы значение только для ядерной физики, но никак не для структурной органической химии, да, вероятно, и не для химии вообще, если бы не одно важное обстоятельство. А именно: существуют и долгоживущие возбужденные ядра, избыток энергии которых проявляется далеко не так быстро, как при обычных переходах нуклонов из одного состояния в другое. Такие ядра называют изомерами , они имеют те же зарядовые и массовые числа, но другую энергию и другое время жизни. Открыли ядерную изомерию О.Ган (1921) при изучении бета-распада тория-234 и И.В.Курчатов с сотрудниками Л.В.Мысовским и Л.И.Русиновым при наблюдении искусственной радиоактивности ядер брома (1935–1936). Теория ядерной изомерии была разработана К.Ф. фон Вейцзеккером в 1936 г.
Именно время жизни метастабильных состояний ядер (изомеров) играет ключевую роль в формировании спектральных линий гамма-спектроскопии. Согласно тому же принципу неопределенности Гейзенберга неопределенность в энергии уровней, а значит, и естественная ширина спектральной линии должны быть исключительно малыми. В частности, простой подсчет на примере изотопа железа-57 показывает ничтожно малую величину, порядка 5–10 –9 эВ. Именно эта беспрецедентная узость спектральных линий стала причиной неудач всех работ до Мёссбауэра.
Ученый в своей знаменитой работе под названием «Резонансное поглощение -квантов в твердых телах без отдачи» так писал по этому поводу: «Гамма-кванты, испускаемые при переходе ядра из возбужденного состояния в основное, обычно не подходят для того, чтобы перевести то же самое ядро из основного состояния в возбужденное путем обратного процесса резонансного поглощения. Это является следствием потерь энергии на отдачу, которую -квант испытывает в процессе испускания или поглощения из-за того, что он передает импульс отдачи испускающему или поглощающему атому. Эти потери энергии на отдачу столь велики, что линии испускания и поглощения значительно сдвинуты относительно друг друга». В результате резонансное поглощение (или флуоресценция), как он отмечал, у икс-лучей обычно не наблюдается. Для того чтобы сделать резонансное поглощение гамма-квантов наблюдаемым, очевидно, надо искусственно создать такие условия, чтобы линии испускания и поглощения перекрылись.
Так, уже в 1951 г. П.Б.Мун из Бирмингемского университета (Англия) предложил компенсировать отдачу ядер при излучении путем механического перемещения источника при его движении навстречу ядрам приемника. При этом кинетическая энергия движения источника складывается с энергией гамма-кванта, и, следовательно, можно подобрать такую скорость, при которой полностью восстанавливается условие резонанса. Но несколькими годами позже Мёссбауэр для решения этой проблемы неожиданно нашел более простой способ, в котором потеря на отдачу с самого начала предотвращалась. Ученый добился флуоресценции гамма-лучей, используя в качестве их источника атомы радиоактивного изотопа металла иридия-191 .
Иридий – кристаллическое твердое тело, так что излучающие и поглощающие атомы занимают фиксированное положение в кристаллической решетке. Охладив кристаллы жидким азотом, Мёссбауэр с удивлением обнаружил, что флуоресценция заметно увеличилась. Изучая это явление , он установил, что отдельные ядра, испускающие или поглощающие гамма-лучи, передают импульс взаимодействия непосредственно всему кристаллу. Поскольку кристалл по сравнению с ядром гораздо более массивен, то благодаря сильному взаимодействию атомов в твердых телах энергия отдачи передается не отдельному ядру, а превращается в энергию колебаний кристаллической решетки, в результате у излучаемых и поглощаемых фотонов частотный сдвиг не наблюдается. В этом случае линии испускания и поглощения перекрываются, что и позволяет наблюдать резонансное поглощение гамма-квантов.
Это явление, которое Мёссбауэр назвал «упругим ядерным резонансным поглощением гамма-излучения», ныне называется эффектом Мёссбауэра. Как и всякий эффект, возникающий в твердом теле, он зависит от кристаллической структуры вещества, температуры и даже присутствия мельчайших примесей. Ученый также показал, что подавление ядерной отдачи с помощью открытого им явления позволяет генерировать гамма-лучи, длина волны которых постоянна с точностью до одной миллиардной ( = 10 –9 см). На рис. 1 представлена схема его экспериментальной установки.
В действительности полное описание эффекта Мёссбауэра требует привлечения знаний из различных разделов квантовой механики, поэтому в данной статье мы остановились лишь на самых общих положениях его подхода.

В последующих экспериментах (вслед за иридием были изучены другие объекты: 187 Re, 177 Hf, 166 Er, 57 Fe и 67 Zn, в которых также наблюдалось резонансное поглощение без отдачи) Мёссбауэр окончательно подтвердил правильность объяснения наблюденного им эффекта резонансной гамма-флуоресценции без отдачи и в то же время дал основу экспериментальной методики всех последующих исследований этого явления.
Изучая смещения линий испускания и поглощения, можно получить крайне полезную информацию о строении твердых тел. Сдвиги могут быть измерены с помощью мёссбауэровских спектрометров (рис. 2).

Рис. 2.
Упрощенная схема
мёссбауэровского спектрометра

Источник гамма-квантов с помощью механического или электродинамического устройства приводится в возвратно-поступательное движение со скоростью относительно поглотителя. С помощью детектора гамма-излучения измеряется зависимость от скорости интенсивности потока гамма-квантов, прошедших через поглотитель.
Все эксперименты по наблюдению мёссбауэровских спектров сводятся к наблюдению зависимости поглощения (реже – рассеяния) гамма-квантов в исследуемом образце от скорости движения этого образца относительно источника. Не вдаваясь в подробности устройства различных экспериментальных установок, следует отметить, что классическая схема мёссбауэровского спектрометра включает следующие основные элементы: источник излучения, поглотитель, система движения источника относительно поглотителя и детектор.

Общие применения метода

После опубликования первой статьи Мёссбауэра прошло около года, прежде чем другие лаборатории начали повторять и расширять его опыты. Первые проверочные эксперименты были проведены в США (Лос-Аламосская научная лаборатория и Аргоннская национальная лаборатория). Причем, что интересно, исследования в Лос-Аламосской лаборатории начались с заключения пари между двумя физиками, один из которых не верил в открытие Мёссбауэра, а другой повторил его опыт и таким образом выиграл спор (наблюдали гамму-линию в 67 Zn). Значительный рост публикаций по этой тематике наблюдается после открытия эффекта Мёссбауэра в 57 Fe, осуществленного независимо также в Гарвардском университете, Аргоннской национальной лаборатории и др. Легкость, с которой эффект может наблюдаться в 57 Fe, его огромная величина и его наличие вплоть до температур, превышающих 1000 °С, сделали в результате эту область исследований доступной даже лабораториям с очень скромным оборудованием.
Скоро физики выяснили, что при помощи эффекта Мёссбауэра можно определять времена жизни возбужденных состояний ядер и размеры самих ядер, точные величины магнитных и электрических полей около излучателей-ядер, фононные спектры твердых тел. Для химиков же наиболее важными оказались два параметра – химический сдвиг резонансного сигнала и так называемое квадрупольное расщепление .
В результате в физике твердого тела наибольшее развитие получили исследования с помощью эффекта Мёссбауэра магнитной структуры и магнитных свойств элементов, соединений, особенно сплавов. Особенно ощутимый прогресс в этом направлении был достигнут в работах по редкоземельным элементам. Вторым важнейшим направлением исследований стало изучение динамики кристаллической решетки.
Совершенно по-иному обстояло дело в химии. Как оказалось, при помощи сигналов гамма-резонансной спектроскопии можно делать определенные заключения об электрическом поле в центре атома и решать типичные для химии задачи, связанные с природой химической связи. Мёссбауэровская спектроскопия позволила решить многие вопросы строения химических соединений, она нашла свое применение в химической кинетике и радиационной химии. Этот метод оказался незаменимым при определении структур биологических макромолекул с особенно большой молекулярной массой.
Следует добавить к этому, что гамма-резонансная спектроскопия, как оказалось, имеет невероятно высокую чувствительность (на 5–6 порядков выше, чем в ядерном магнитном резонансе), следовательно, можно понять ажиотаж химиков в начале 1960–1970-х гг. Страсти, правда, немного поутихли, когда химики освоились с обстановкой и выяснили ограничения в применении метода. В частности, В.И.Гольданский в своей книге, посвященной применениям эффекта Мёссбауэра в химии, писал: «Основными объектами приложения эффекта Мёссбауэра в химии, по-видимому, являются элементоорганические соединения и комплексные соединения. В области элементоорганических соединений существенный интерес представляет сопоставление общего характера элементо-углеродных связей, сильно различающегося для переходных металлов и металлов основных групп». Но с тех пор прошло 30 лет, и гамма-резонансная спектроскопия подтвердила свою перспективность использования для самых разных целей и объектов химии.

Химические применения метода

Положение резонансного сигнала зависит от того, в каком электронном окружении находится ядро, испускающее квант. Получение нового типа физической информации об электронном окружении ядер, несомненно, всегда представляло значительный интерес для химии.
Разрешение вопросов природы химической связи и строения химических соединений. Поскольку основные параметры мёссбауэровских спектров – такие, как химические сдвиги и квадрупольные расщепления, – в значительной степени определяются строением валентных электронных оболочек атомов, то первой естественной возможностью химического применения этого эффекта было исследование природы связей этих атомов. При этом наиболее простой подход к задаче состоял в разграничении двух видов связи – ионной и ковалентной – и оценке вклада каждой из них. Но следует заметить, что имеется в виду самый простой подход, т. к. не следует забывать, что само разграничение химических связей на ионные и ковалентные является довольно грубым упрощением, поскольку при этом не учитываются возможности образования, например, донорно-акцепторных связей, связей с участием многоцентровых орбит (в полимерах) и других, обнаруженных за последние десятилетия.
Такой параметр, как химический сдвиг, удается коррелировать со степенью окисления атомов элементов в молекулах исследуемых веществ. Особенно хорошо разработаны корреляционные диаграммы изомерных (химических) сдвигов 57 Fe для соединений железа. Как известно, железо входит составной частью во многие биосистемы, в частности гемопротеины и системы небелковой природы (например, содержащиеся в микроорганизмах). В химии жизненных процессов существенную роль играют окислительно-восстановительные реакции порфириновых комплексов железа, в которых железо также находится в различных валентных состояниях. Биологическая функция данных соединений может быть раскрыта, лишь когда имеются детальные сведения о структуре активного центра и об электронных состояниях железа на разных стадиях биохимических процессов.
Как уже упоминалось выше, важными объектами приложения эффекта Мёссбауэра в химии являются элементоорганические и комплексные соединения. В области элементоорганических соединений существенный интерес представляло сопоставление общего характера элементо-углеродных связей, сильно различающихся для переходных металлов и металлов основных групп (например, работы А.Н.Несмеянова).
Так, с помощью эффекта Мёссбауэра проводились сравнения ацетиленидных комплексов ряда переходных металлов. Особенно успешные исследования осуществлены для циклопентадиенилидов металлов М(С 5 Н 4) 2 , в частности ферроценоподобных «сандвичевых» структур.
Важным приложением этого эффекта является выяснение структуры додекакарбонила железа. Результаты предварительных рентгеноструктурных исследований показывали, что атомы железа локализованы по углам треугольника в этих молекулах. Именно поэтому так долго пришлось согласовывать эти результаты с мёссбауэровскими спектрами додекакарбонила железа, т. к. последние исключали любую симметричную треугольную структуру. Повторные эксперименты одновременно с применением методов рентгеноструктурного анализа и мёссбауэровской спектроскопии показали, что выбор однозначно можно остановить только на линейных структурах.
Особо отметим применение эффекта Мёссбауэра в определении структур биомолекул. В настоящее время структура протеинов определяется почти исключительно методом рентгеновской дифракции на монокристаллах этих белков (см. об этом: Прямые методы в рентгеновской кристаллографии. Химия, 2003, № 4).
Однако этот метод имеет ограничения, связанные с молекулярной массой изучаемых систем. Например, молекулярная масса 150 000 г/моль, которую имеет гамма-иммуноглобулин, – верхний предел для определения структуры методом последовательных изоморфных замещений. Для белков, обладающих большей молекулярной массой (например, каталаза, гемоцианин, вирус табачной мозаики и др.), необходимо использовать другие методы. Именно здесь удачно себя зарекомендовал метод резонансного рассеяния гамма-излучения без отдачи на ядрах 57 Fe. Этот метод использует интерференцию между гамма-излучением, рассеянным на электронных оболочках всех атомов в кристалле и на некоторых ядрах 57 Fe, внедренных в кристалл на определенные позиции в элементарной ячейке (мёссбауэровское рассеяние).
Химическая кинетика и радиационная химия. Наряду с вопросами строения химических соединений эффект Мёссбауэра активно используется в химической кинетике и радиационной химии. Помимо возможностей прямого получения кинетических кривых полностью в одном опыте (по частоте отсчетов при какой-то фиксированной характерной скорости движения) здесь особенно интересны наблюдения нестабильных промежуточных продуктов. При осуществлении реакций в жидкой фазе возникает необходимость останавливать процесс, замораживая смесь для каждого наблюдения мёссбауэровского спектра. В случае же топохимических процессов (особенно для радиационно-топохимических процессов) возможно непрерывное наблюдение изменения мёссбауэровского спектра в ходе реакции.
Несомненно, следует упомянуть также другие достаточно перспективные применения метода мёссбауэровской спектроскопии. Прежде всего данный эффект стал полезным инструментом для решения целого ряда задач физической химии полимеров, в частности проблемы стабилизации полимеров. Его также используют в качестве анализатора в методе меченых атомов. В частности, были проведены эксперименты по изучению метаболизма железа, включающегося в эритроциты млекопитающих и в митохондрии бактерий.

Послесловие

Конечно, метод мёссбауэровской спектроскопии не столь широко применяется в химических исследованиях, как, например, известные методы ЯМР, инфракрасной и масс-спектроскопии. Это связано как с малой доступностью и сложностью оборудования, так и с ограниченностью круга объектов и решаемых задач. Ведь сам эффект наблюдается на ядрах далеко не любых элементов и изотопов9. Однако его применение весьма актуально в сочетании с другими методами исследований, особенно радиоспектроскопией.
В последние годы получили развитие исследования мёссбауэровских спектров при высоких давлениях. Хотя последние сравнительно слабо влияют на электронные оболочки атомов, тем не менее измеряемые в зависимости от давления параметры мёссбауэровских спектров несут новую информацию о взаимодействии ядра с электронным окружением. По сравнению с другими методами мёссбауэровская спектроскопия в исследованиях при высоких давлениях отличается даже большей чувствительностью к изменениям энергии.

ЛИТЕРАТУРА

R.L. Rckstossfreie Kernresonanzabsorption von Gammastrahlung. Nobelvortrag 11 Dezember 1961. Le Prix Nobel en 1961. Stockholm: Impremerie Royale P.A.Norstedt & Sner, 1962,
S. 136–155;
Гольданский В.И . Эффект Мёссбауэра. М.: Изд-во АН СССР, 1963;
Мёссбауэр Р.Л. Резонансное ядерное поглощение -квантов в твердых телах без отдачи. Успехи физических наук, 1960, т. 72, вып. 4, с. 658–671.

МЁССБАУЭР Рудольф Людвиг (р. 31.I.1929) родился в Мюнхене (Германия) в семье фототехника Людвига Мёссбауэра и его жены Эрны, урожденной Эрнст. Получив первоначальное среднее образование в одной из мюнхенских окраинных школ (район Пасинга), затем поступил в гимназию, которую закончил в 1948 г.
Затем один год Мёссбауэр работал в оптической фирме и далее, подав документы на физическое отделение Высшей технической школы в Мюнхене (ныне Технический университет), в 1949 г. был зачислен в студенты. В 1952 г. он получил степень бакалавра, в 1955 г. – закончил магистратуру, в 1958 г. после защиты диссертации получил степень доктора философии.
Во время выполнения дипломной работы в 1953–1954 гг. молодой человек работал преподавателем математики в Математическом институте в Alma Mater . По окончании учебы с 1955 по 1957 г. был ассистентом в Институте физики медицинских исследований им. М.Планка в Гейдельберге, а в 1959 г. стал ассистентом Технического университета в Мюнхене.
Докторская диссертация, в которой был открыт эффект, носящий его имя, выполнялась ученым под руководством известного мюнхенского физика Х.Майер-Лейбница.
Вначале результаты, полученные Мёссбауэром, большинством ученых не поддерживались и подверглись сомнению. Однако через год, признав потенциальную важность этого эффекта, некоторые из его оппонентов своими экспериментальными исследованиями полностью подтвердили их состоятельность. Вскоре важность открытия была признана всеми физиками, «эффект Мёссбауэра» стал сенсацией, и десятки ученых различных лабораторий мира начали работать в этой области.
В 1961 г. Мёссбауэр получил Нобелевскую премию по физике «за исследование резонансного поглощения гамма-излучения и открытие в этой связи эффекта, носящего его имя».
Мёссбауэр должен был стать профессором Технического университета в Мюнхене, но, разочаровавшись в бюрократических и авторитарных принципах организационных структур немецких университетов, он, взяв в 1960 г. творческий отпуск в Гейдельберге, по научному гранту уехал в США в Калифорнийский технологический институт. В следующем же году он получил там звание профессора.
В 1964 г. ученый вернулся на родину и возглавил физический факультет Технического университета в Мюнхене, преобразовав его по типу организационных структур американских университетов. Некоторые ученые в шутку называли это изменение в структуре немецкого академического образования «вторым эффектом Мёссбауэра». Работал он в университете до 1971 г.
В 1972–1977 гг. Мёссбауэр возглавлял Институт Макса Лауэ-Поля Ланжевена в Гренобле (Франция). В 1977 г. он возвратился в Аlma Mater , где продолжил работать профессором физики и одновременно научным руководителем института, специально созданного для разработки проблем в области мёссбауэровской спектроскопии и мёссбауэрографии. В 1980–1990-е гг. возглавлял проект Мёссбауэра–Парака–Хоппе по изучению дифракции мёссбауэровских гамма-квантов на биологических объектах (мёссбауэрография белка).
В 1957 г. ученый женился на Элизабет Притц, дизайнере. У супругов – один сын и две дочери.
Мёссбауэр является членом Американского, Европейского и Немецкого физических обществ, Индийской академии наук и Американской академии наук и искусств. Ученый удостоен почетных докторских степеней Оксфордского, Лестерского и Гренобльского университетов.
Кроме Нобелевской премии Мёссбауэр имеет награду за научные достижения Американской исследовательской корпорации (1960), медаль Э.Грессона Франклиновского института (1961). Он является также лауреатом премии Рентгена Гисеновского университета (1961).

Гамма-излучение – коротковолновое электромагнитное излучение с длиной волны меньшей или равной 10 –8 см; обладает ярко выраженными корпускулярными свойствами, т. е. ведет себя подобно потоку частиц – гамма-квантов или фотонов.
Один из способов описания квантово-механических явлений; указывает, как быстро изменяются во времени те или иные параметры, характеризующие состояние системы (применительно к данному случаю, например, ширина спектральной линии).
Следует заметить, что молодой ученый с трудом получил этот изотоп иридия для экспериментов от английских коллег. В Германии было тяжелое, послевоенное время; отсутствовали многие вещества, а также приборы, необходимые для исследований.
Полученные результаты противоречили принятым тогда представлениям о резонансной ядерной флуоресценции, хотя и не вызывали сомнения в их правильности. Не хватало лишь теоретической интерпретации эффекта. Тогда по совету своего научного руководителя Мёссбауэр ознакомился со статьей В.Лэмба (1939) по теории взаимодействия медленных нейтронов с кристаллами. Как оказалось, его теорию можно было удачно применить к наблюдаемому Мёссбауэром явлению. Парадокс состоял в том, что исследователи, работавшие с нейтронами, прекрасно были знакомы с этой работой Лэмба, но им не приходило в голову приложить ее результаты к изучению гамма-флуоресценции; в то же время те, кто занимались резонансным рассеянием и поглощением гамма-квантов, не обращались к достижениям соседней области ядерной физики. Применив расчеты Лэмба к гамма-лучам, Мёссбауэр смог объяснить свои результаты.
Фонон – квант колебательного движения атомов кристалла.
Изменение энергии ядерного перехода, т. е. энергии поглощаемого образцом гамма-кванта по сравнению с испукаемым, связанное с различием электронного окружения ядер в образце и источнике, называется изомерным, или химическим, сдвигом и измеряется как значение скорости движения источника, при котором наблюдается максимум поглощения гамма-квантов.
Взаимодействие квадрупольного момента ядра (под которым понимается величина, характеризующая отклонение распределения электрического заряда в атомном ядре от сферически симметричного) с неоднородным электрическим полем приводит к расщеплению ядерных уровней, в результате чего в спектрах поглощения наблюдается не одна, а несколько линий. Изучение квадрупольного расщепления позволяет получать информацию об электронных конфигурациях атомов и ионов.
Твердофазные реакции, протекающие локально там же, где образуется твердая фаза продукта.

Статья подготовлена при поддержке бюро переводов «Амира-Диалект». Если вам необходимо осуществить нотариальный перевод, то лучшим решением станет обратиться в бюро переводов «Амира-Диалект». Так как нотариальный перевод требуют ряд консульств для получения визы, то не стоит тратить время в пустую. В бюро переводов «Амира-Диалект» работают только высококвалифицированные специалисты, которые в кратчайшие сроки выполнят заказ любой сложности.

Cтраница 1


Ядерный гамма-резонанс (ЯГР) - излучение или поглощение гамма-квантов твердым телом без рождения в нем фононов - не относится к числу магнитных резонансов.  

Ядерный гамма-резонанс (эффект Мессбауэра) позволяет получать ценную информацию о строении электронных оболочек атомов, содержащих мессбауэровские ядра. Существенным недостатком метода является ограниченность числа элементов, практически доступных для исследования. В настоящей работе сделана попытка преодолеть это ограничение, используя результаты мессбауэровских измерений на ядрах Sn119 и Sb121 атомов олова и сурьмы, входящих в состав соединений, а также на ядрах Fe57 примесных атомов железа в качестве критерия применимости различных подходов при теоретическом расчете эффективных зарядов атомов в соединениях рассматриваемого типа.  

Спектроскопия ядерного гамма-резонанса (мессбауэровская спектроскопия) позволяет обнаружить слабые возмущения энергетических уровней ядер железа окружающими электронами. Этот эффект представляет собой явление испускания или поглощения мягкого v-излучения без отдачи ядер. Интересующий нас ядерный переход с энергией 14 36 кэВ - происходит между состояниями / 3 / 2 и / 1 / 2 мессбауэровского изотопа 57Fe, где / - ядерное спиновое квантовое число. Для белка с молекулярным весом 50 000, который связывает 1 атом железа на молекулу, и в отсутствие изотопного обогащения это соответствует весу образца 2 5 г. Рассматриваемые здесь многоядерные белки содержат гораздо больше железа и вполне подходят для исследования методом ядерной гамма-резонансной спектроскопии. Широко исследуются четыре возможных типа взаимодействия между ядром 57Fe и его электронным окружением: изомерный сдвиг, квадрупольное расщепление, ядерные магнитные сверхтонкие взаимодействия, ядерные зеемановские взаимодействия.  

Суть ядерного гамма-резонанса, или так называемого эффекта Мессбауэра, состоит в том, что у кванты испущенные при переходе возбужденного ядра в основное состояние, могут равновесно поглощаться невозбужденными ядрами с переходом последних в возбужденное состояние. Аналогичное явление хорошо известно в обычной оптике; существенно лишь то, что при сравнительно большом импульсе у-квантов следовало бы ожидать сильной отдачи как у испускающего; так и у поглощающего ядра и тем самым невозможности резонансного поглощения из-за эффекта Допплера. Мессбауэр показал, что по крайней мере в значительной доле случаев отдачу принимает на себя кристалл (или тяжелая молекула) как жесткое целое, и явлением отдачи при этом, естественно, можно пренебречь.  

Явление ядерного гамма-резонанса на атомных ядрах заключается в резком возрастании вероятности поглощения или рассеяния у-кван-тов с энергией, соответствующей возбуждению ядерных переходов.  

Исследование с помощью ядерного гамма-резонанса показало, что изучаемые частицы железа не окислены.  

Методом рентгеноструктурного анализа и ядерного гамма-резонанса было установлено, что данное изменение кристаллической структуры не связано с изменением концентрации углерода в твердом растворе, а обусловлено обратимыми переходами атомов внедрения (углерода) из октаэдрических междоузлий к радиационным дефектам. Для таких переходов не требуется диффузии углерода на значительные расстояния - она совершается в пределах элементарной ячейки. Повышенная концентрация точечных дефектов, созданных облучением в кристаллической решетке мартенсита, стимулирует переходы атомов внедрения с одних позиций на другие, энергетически более выгодные при данных температурах.  

Нами были проведены наблюдения ядерного гамма-резонанса в образцах различных массивных многокомпонентных оловосодержащих стекол и стекловолокнах того же химического состава. Составы стекол приведены в таблице.  

Нами было проведено изучение ядерного гамма-резонанса в комплексных соединениях железа с анионами 4-бутироил - и 4-бензоил - 1 2 3-три-азола. Спектры получены на спектрометре ЯГР механического типа, источник Со57 в хроме.  

Обработка экспериментальных данных по ядерному гамма-резонансу возможна только в том случае, если проведена калибровка ЯГР спектрометра по скоростям и определены положения линий поглощения каких-либо веществ, выбранных в виде стандарта. Обычно в качестве стандарта используют вещества, которые могут быть достаточно легко изготовлены и воспроизведены в идентичных условиях. Они должны быть стабильны, должны иметь достаточно большую величину вероятности поглощения - у-квантов без потери энергии на отдачу, их мессбауэровские спектры должны представлять собой узкую линию, характеризующуюся малым температурным сдвигом.  

Хотя квадруполыюе расщепление усложняет вид спектров ядерного гамма-резонанса (ЯГР) (рис. 111 6), но оно помогает вывести ряд важных заключений о структуре и симметрии исследуемых соединений. Это соединение (служившее поглотителем) было синтезировано с применением изотопа 1291 - долгоживущего продукта реакции деления. Сложный вид спектра обусловлен как квадрупольным расщеплением, так и тем, что иод находится в этом соединении в двух различных позициях.  

Нами было предпринято систематическое исследование методом ядерного гамма-резонанса (ЯГР) соединений олова с элементами пятой и шестой групп, а также халькогенидных полупроводниковых стекол в системе мышьяк - селен - олово с целью получения информации о химической связи и внутренних кристаллических полях в этих соединениях.  


Изучение узких линий проводят с помощью метода ядерного гамма-резонанса, который принято называть мессбауэровской спектроскопией. На рис. 8.14 показана типичная схема экспериментальной установки.  

Метод мессбауэровской спектроскопии, называемой иногда спектроскопией ядерного гамма-резонанса (ЯГР), основан на изучении поглощения у-излучения какого-то ядра-источника ядром того же изотопа, находящимся в исследуемом образце. Условия резонанса соблюдаются только тогда, когда устранен также эффект отдачи ядер при испускании и поглощении у-квантов, а также скомпенсирован каким-то образом эффект Допплера. Метод получил свое развитие именно с того момента, когда это было понято, а еще раньше экспериментально был найден простой и едва ли не единственно возможный путь ликвидации потерь на отдачу.  

Энергия ядер квантована. При переходе ядра из возбужденного состояния в основное излучается -квант с энергией . Более возможное значение этой энергии для нескончаемо томного свободного ядра равно разности энергий его основного и возбужденного состояний: . Оборотный процесс соответствует поглощению г-кванта с энергией, близкой к .

При возбуждении совокупность схожих ядер на один и тот же уровень энергия испущенных квантов будет характеризоваться неким разбросом около среднего значения .


Рис 1.13 Схема, иллюстрирующая квантовые переходы с излучением и поглощением электрических квантов (а) и вид линий излучения и поглощения в оптическом (б) и ядерном (в) случаях.

Контур полосы поглощения описывается этим же соотношением, что и контур полосы испускания (Рис. 1.13). Понятно, что эффект резонансного поглощения электрического излучения оптического спектра, когда оптические кванты, испускаемые при переходе электронов возбужденных атомов на нижележащи е электрические уровни, резонансно поглощаются веществом, содержащим атомы такого же самого сорта. Явление статического резонансного поглощения отлично наблюдается, к примеру на парах натрия.

К огорчению, явление резонансного ядерного поглощения на свободных ядрах не наблюдается. Причина состоит в том, что модель томных ядер (атомов), когда энергопотери на отдачу по отношению к невелики, справедлива для оптического резонанса и совсем неприменима для ядерного. Гамма-кванты, излучаемые в ядерных переходах, имеют существенно более высшую энергию – 10-ки и сотки кэВ (по сопоставлению с несколькими десятками эВ для квантов видимой области). При сравнимых значениях времени жизни и, соответственно, близких значениях естественной ширины электрических и ядерных уровней в ядерном случае еще более существенную роль при испускании и поглощении играет энергия отдачи:

где – импульс отдачи ядра равный по модулю импульсу излученного -кванта, m – масса ядра (атома).

Потому в оптическом случае и резонанс на свободных ядрах не наблюдается (см. рис. 1.13 б и в). Рудольф Мессбауэр, изучая поглощение -квантов, излученных изотопом Ir, в кристалле Ir нашел, в противоположность пророчествам традиционной теории, повышение рассеяния -квантов при низких температурах (T≈77K). Он показал, что наблюдаемый эффект связан с резонансным поглощением -квантов ядрами атомов Ir и отдал разъяснение его природы.

В опытах по эффекту Мессбауэра измеряются не сами по для себя полосы испускания (либо поглощения), а кривые резонансного поглощения (мессбауэровские диапазоны). Уникальные внедрения способа ядерного гамма-резонанса в химии и физике твердого тела обоснованы тем, что ширина составляющих мессбауэровский диапазон личных резонансных линий меньше энергий магнитного и электронного взаимодействий ядра с окружающими его электронами. Эффект Мессбауэра – действенный способ исследования широкого круга явлений, влияющих на эти взаимодействия.

Простая схема наблюдения эффекта Мессбауэра в геометрии пропускания включает источник, поглотитель (узкий эталон исследуемого материала) и сенсор г-лучей (рис. 1.14).

Рис. 1.14 Схема мессбауэровского опыта: 1– электродинамический вибратор, задающий разные значения скорости источника; 2 – мессбауэровский источник; 3 – поглотитель, содержащий ядра мессбауэровского изотопа; 4 – сенсор прошедших через поглотитель г-квантов (обычно пропорциональный счетчик либо фотоэлектронный умножитель).

Источник -лучей должен владеть определенными качествами: иметь большой период полураспада ядра, в случае распада которого рождается ядро резонансного изотопа в возбужденном состоянии. Энергия мессбауэровского перехода должна быть относительно малой (чтоб энергия отдачи не превысила энергию, нужную для смещения атома и узла кристаллической решетки ), линия излучения – узенькой (это обеспечивает высочайшее разрешение) и возможность бесфонного излучения – большой. Источник г-квантов в большинстве случаев получают введением мессбауэровского изотопа в железную матрицу средством диффузионного отжига. Материал матрицы должен быть диа- либо парамагнитным (исключается магнитное расщепление ядерных уровней).

В качестве поглотителей употребляют тонкие эталоны в виде фольги либо порошков. При определении нужной толщины эталона необходимо учесть возможность эффекта Мессбауэра (для незапятнанного железа лучшая толщина ~20 мкм). Лучшая толщина является результатом компромисса меж необходимостью работать с узким поглотителем и иметь высочайший эффект поглощения. Для регистрации -квантов, прошедших через эталон, более обширно используются сцинтилляционные и пропорциональные счетчики.

Получение диапазона резонансного поглощения (либо мессбауэровского диапазона) подразумевает изменение критерий резонанса, зачем нужно модулировать энергию -квантов. Применяющийся в текущее время способ модуляции основан на эффекте Доплера (в большинстве случаев задают движение источника г-квантов относительно поглотителя).

Энергия г-кванта за счет эффекта Доплера меняется на величину

где – абсолютное значение скорости движения источника относительно поглотителя; с – скорость света в вакууме; – угол меж направлением движения источника и направление испускания г-квантов.

Так как в опыте угол воспринимает только два значения =0 и , то ∆E = (положительный символ соответствует сближению, а отрицательный – удалению источника от поглотителя).

В отсутствие резонанса, к примеру, когда в поглотителе отсутствует ядро резонансного изотопа либо когда доплеровская скорость очень велика (, что соответствует разрушению резонанса из-за очень огромного конфигурации энергии -кванта), наибольшая часть излучения, испущенного в направлении поглотителя, попадает в расположенный за ним сенсор.

Сигнал от сенсора усиливается, и импульсы от отдельных -квантов регистрируются анализатором. Обычно регистрируют число —квантов за однообразные промежутки времени при разных . В случае резонанса г-кванты поглощаются и переизлучаются поглотителем в случайных направлениях (рис. 1.14). Толика излучения, попадающего в сенсор, при всем этом миниатюризируется.

В мессбауэровском опыте исследуется зависимость интенсивности прошедшего через поглотитель излучения (числа зарегистрированных сенсором импульсов) от относительной скорости источника . Эффект поглощения определяется отношением

где – число г-квантов, зарегистрированных сенсором за определенное время при значении доплеровской скорости (в опыте употребляют дискретный набор скоросте й ); – то же при , когда резонансное поглощение отсутствует. Зависимости и задают вид кривой резонансного поглощения сплавов и соединений железа, лежат в границах ±10 мм/с.

Возможность эффекта Мессбауэра определяется фононным диапазоном кристаллов. В области низких температур () возможность добивается значений, близких к единице, а в области больших () она очень мала. При иных равных критериях возможность бесфонного поглощения и излучения больше в кристаллах с высочайшей температурой Дебая (определяет твердость межатомной связи).

Возможность эффекта определяется диапазоном упругих колебаний атомов в решетке кристалла. Мессбауэровская линия интенсивна, если амплитуда колебаний атомов невелика по сопоставлению с длиной волны г-квантов, т.е. при низких температурах. В данном случае диапазон излучения и поглощения состоит из узенькой резонансной полосы (бесфонные процессы) и широкой составляющие, обусловленной конфигурацией колебательных состояний решетки при излучении и поглощении г-квантов (ширина последней на 6 порядков больше ширины резонансной полосы).

Анизотропия межатомной связи в решетке обусловливает анизотропию амплитуды колебаний атомов и, как следует, различную возможность бесфонного поглощения в разных кристаллографических направлениях. Для монокристаллов, таким макаром могут быть измерены не только лишь усредненные, да и угловые зависимости.

В приближении узкого поглотителя возможность бесфонных переходов пропорциональна площади под кривой резонансного поглощения. Ядерный гамма-резонанс может быть применен для исследования колебательных параметров решетки твердого тела либо примесных атомов в этой решетке. Более комфортным экспериментальным параметром в данном случае является площадь диапазона S, потому что она является интегральной чертой и не находится в зависимости от формы диапазона испускания резонансных квантов и самопоглощения в источнике. Эта площадь сохраняется при расщеплении диапазона на несколько компонент в итоге сверхтонких взаимодействий.

Простой диапазон резонансного поглощения узкого поглотителя представляет собой одиночную линию лоренцевской формы. Интенсивность прошедшего через поглотитель излучения мала в максимуме поглощения. В качестве примера на рис. 1.15 приведены мессбауэровские диапазоны незапятнанного железа.

Рис. 1.15 Мессбауэровские диапазоны незапятнанного железа.

3. Методы ядерной геофизики.

1) Радиометрические методы. В них изучаются естественные радиоактивные поля или естественные радиоактивные элементы.

Аэро-γ-съемка

Изучение γ-поля горных пород с воздуха. Метод применяется для геологического картирования, для изучения зон разломов и тектонических нарушений, для поисков радиоактивных и нерадиоактивных (для которых установлена генетическая связь с радиоактивными) элементов. Метод обладает очень высокой производительностью. За рабочий день съемкой может быть покрыто до 200 км2. В связи с этим метод не относиться к дорогостоящим. Метод имеет и существенные недостатки:

1) Малая глубинность метода;

2) Малая чувствительности при наличии экранирующих рыхлых отложений;

3) Малая чувствительность при полетах на больших высотах.

Тем не менее, этот метод очень широко применяется на практике.

Авто-γ-съемка

Метод имеет много общего с аэро-γ-съемкой, применяется практически для решения тех же задач. Имеет те же недостатки и те же достоинства. Съемка может быть маршрутной, может быть площадной. Маршрутная носит рекогносцировочный характер, обычно проводиться перед площадной. Площадная более широко применяется, она обычно проводиться на перспективных участках. И при детализации аэро-γ-аномалии.

Пешеходная γ-съемка

Наиболее простой вид проведения γ-съемки. Применяется для решения всех тех задач, о которых мы уже говорили, но в крупных масштабах и при детализациях. Далее применяется при работе в труднодоступных районах, где нельзя воспользоваться ни автомобилем, ни самолетом. А также применяется в неспециализированных геологических отрядах (не геофизики, а геологи).

Эманационная съемка

Это изучение концентрации радиоактивных газов (эманаций) в почвенном воздухе или в воздухе, извлеченном из горных пород. При распаде в радиоактивных семействах, образуются радиоактивные газы:

Эти газы непрерывно образуются в горных породах, потому что там присутствуют их родоначальники. Метод применяется для поисков радиоактивных урановых и ториевых руд; для изучения зон разломов, тектонических нарушений; для решения очень многих инженерно-геологических задач, связанных с трещинноватостью пород и с ослабленными участками (закарстованными, оползневыми); для решения экологических задач (по радону).

Уранометрическая съемка (литогеохимическая)

Это изучение содержаний урана в коренных или рыхлых горных породах. Этот метод относиться к геохимическим. Это прямой метод на уран. Содержание урана в горных породах составляет примерно 10-5 – 10-4 %, это так называемый, геохимический фон. В некоторых телах концентрация может повышаться до первых единиц процентов и образуется рудное тело. Рудное тело подвергается процессам выветривания и вокруг него образуется ареол рассеяния. Рис 9.2. Поэтому съемка заключается в поиске потоков рассеяния, затем ореолов рассеяния. В процессе съемки отбираются пробы горных пород. Анализ этих проб основан на свойстве фтористого натрия NaF люминесцировать под воздействием ультрафиолетового излучения.

Радиогидрогеологическая съемка (гидрогеохимическая съемка)

Это изучение содержаний радиоактивных элементов, а чаще всего урана, радия и радона, в водах. Она основана на том, что радиоактивные элементы, в особенности радий, очень хорошо мигрируют в окислительной среде и поэтому переносятся на большие расстояния от самой залежи. Благодаря этому обнаруживаются «слепые» (залегают на глубине, их не видно) рудные тела, глубиной до 50-70 м, а в горных районах и больше.

Биогеохимическая съемка

Изучение содержаний радиоактивных элементов в золе растений. Либо нахождение растений, на которые благоприятно или угнетающе действуют какие-либо элементы. Классический пример: некоторые виды острогала растут лишь на почвах с повышенным содержанием селена. А селен спутник урана. Конечно, такой метод выполняется в комплексе с каким-либо основным методом. При определении содержаний радиоактивных элементов строят карту в изолиниях, определяют фон и анализируют.

Недостатком геохимических методов является трудоемкость и высокая стоимость анализов. Положительными качествами являются точность и бОльшая глубинность.

2) Ядерно-геофизические методы

Это методы, в которых производиться облучение горных пород либо γ-источником, либо нейтронным источником, и изучаются эти поля, прошедшие через горную породу, или явления, которые возникают при таком облучении.

Гамма-гамма метод

Это изучение γ-поля от источника, прошедшего через горную породу. Применяется для изучения плотности горных пород (ГГМ-п) и эффективного атомного номера среды (ГГМ-с). Этот метод, как впрочем, большинство ядерно-геофизических методов, используется в каротажном варианте, что очень важно для определения параметров в условиях естественного залегания. При облучении горных пород γ-источником, уменьшение интенсивности связано с изменением вещественного состава пород и плотности. В основном эти два фактора влияют на интенсивность излучения. Установлено, что комптоновский эффект связан в основном с изменением плотности породы. В то время, как вещественный состав практически не влияет. Поэтому для изучения плотности пород используется источник γ-квантов средних энергий (от 0,5 до 1,5 МэВ). С меньшей энергией будет преобладать фотоэффект, а с большей – образование пар

Рентгеннорадиометрический метод (РРМ или РРК)

Заключается в облучении горных пород гамма-квантами малых энергий и регистрация возникшего при этом характеристического рентгеновского излучения. Применяется для изучения вещественного состава, т.е. для анализа на большинство элементов с z>30, а также на некоторые элементы z = 20 – 30, для определения большинства металлов. Метод основан на том, что при облучении горных пород γ-квантами малых энергий (5 – 120 КэВ). При этом наряду с фотоэффектом возникает характеристическое рентгеновское излучение с длиной волны 10-5 – 10-12 см. Причем вероятность возникновения излучения возрастает с увеличением отношения Есвязи/Еγ. Есвязи это энергия электрона на оболочке. Эта дробь правильная. Есвязи для каждого элемента строгоопределенная, поэтому дли изучения отдельного элемента следует строго подбирать излучатель.

Метод ядерного гамма-резонанса (ЯГР)

Основан этот метод на эффекте Мессбауэра, который заключается в том, что при облучении γ-квантами малых энергий (меньше 50 КэВ), в некоторых ядрах наряду с фотопоглощением происходит резонансное поглощение и рассеяние γ-квантов. Этот эффект называют эффектом Мессбауэра. Мессбауэрскими ядрами в частности является олово, поэтому метод используют на определение касситерита SnO2, изотоп Sn119. Кроме того Мессбауэрскими ядрами являются некоторые лантаноиды: 66Dy161 (диспрозий), 68Er151 (эрбий). Fe57. При температуре жидкого азота (-194°С) очень много ядер являются Мессбауэрскими.

Фотонейтронный метод (гамма-нейтронный метод ГНМ)

Заключается в облучении горных пород γ-квантами высоких энергий и регистрации возникшего нейтронного поля. Нейтроны внутри ядра связаны ядерными силами, но при облучении γ-квантами высоких энергий, нейтроны выбиваются из ядер.

Нейтрон-нейтронный метод (ННМ, ННК)

Облучение горных пород нейтронами и изучение этого поля после прохождения его через горную породу. Используется для изучения содержаний нейтроно-поглощающих элементов и для изучения некоторых физических свойств горных пород (в основном коэффициента пористости). При прохождении нейтронов через вещество, они вначале замедляются и затем поглощаются нейтронопоглощающими элементами. В частности, бором, хлором, йодом, марганцем и др. Часто используется как в полевом варианте, так и в каротажном. Очень часто метод применяется при каротаже скважин.

Нейтронный гамма метод

Имеет много общего с ННМ, поскольку используются те же самые нейтронные источники, а измеряется возникшее при этом гамма-поле. Метод применяется для решения практически тех же задач, что и ННМ: изучение физических свойств горных пород, изучение коэффициента пористости и изучение нейтронопоглощающих элементов.

Активационный анализ

Это один из ядерно-геофизических методов. Заключается в облучении стабильных элементов горных пород источником γ-квантов или n, и изучении скорости распада образовавшихся радиоактивных изотопов. На основании этого анализа определяется образовавшийся радиоактивный изотоп, зная источник облучения, определяется исходный, нерадиоактивный изотоп, содержащийся в породе. А на основании эталонных измерений этого элемента, определяется и концентрация этого нерадиоактивного изотопа. А зная распространенность этого изотопа в общей смеси изотопа элемента, определяют концентрацию самого элемента.

Из того факта, что спектры излучения атомных ядер возникают подобно спектрам излучения атомов и молекул, казалось почти очевидным, что атомные ядра, излучающие при переходе из возбужденного состояния в нормальное гамма-кванты с некоторой частотой должны в нормальном состоянии избирательно поглощать такие же кванты. Резонансное поглощение гамма-кванта должно переводить ядро в возбужденное состояние подобно тому, как поглощение света переводит в возбужденное состояние атом или молекулу. Однако попытки

экспериментального обнаружения резонансного поглощения гамма-квантов такими же атомными ядрами, какими эти кванты излучались, долгое время были безрезультатными.

Отрицательные результаты опытов по обнаружению резонансного поглощения гамма-квантов имеют простое объяснение. Если переход ядра из возбужденного состояния в нормальное состояние происходит путем излучения гамма-кванта, то энергия этого кванта не равна в точности разности энергий По закону сохранения импульса при излучении гамма-кванта атомное ядро приобретает импульс, равный импульсу излученного гамма-кванта и направленный в противоположную сторону. Ядро испытывает при излучении фотона отдачу подобно орудию при выстреле. В связи с этим освобожденная энергия распределяется между гамма-квантом и ядром. Следовательно, энергия фотона меньше разности на величину кинетической энергии ядра, испытавшего отдачу:

Понятно, что энергия этого гамма-кванта меньше энергии, необходимой для перевода такого же ядра из нормального состояния в возбужденное:

Немецкий физик Р. Мессбауэр в 1958 г. показал, что в некоторых кристаллах можно создать такие условия, при которых импульс отдачи при излучении гамма-кванта сообщается не отдельному ядру, а всему кристаллу в целом. При этом изменение кинетической энергии кристалла из-за большой его массы (по сравнению с массой одного ядра) приближается к нулю, а энергия излученного гамма-кванта оказывается почти в точности равной разности При пропускании пучка таких гамма-квантов через образец, содержащий атомные ядра того же изотопа, наблюдается резонансное поглощение.

Замечательной особенностью эффекта Мессбауэра является необычайно малая ширина спектральной линии поглощения, т. е. узость резонансного пика поглощения. Например, при использовании изотопа железа резонанс нарушается при изменении частоты гамма-кванта на величину составляющую от его частоты

Это значит, что появляется возможность зарегистрировать изменение энергии гамма-кванта на величину, составляющую от ее первоначального значения!

Использование эффекта Мессбауэра позволило осуществить один из самых тонких экспериментов современной физики - обнаружение гравитационного красного смещения спектральных

линий. Существование гравитационного красного смещения предсказано общей теорией относительности. Приводим здесь упрощенное объяснение этого эффекта, основанное на использовании закона взаимосвязи массы и энергии.

Гамма-фотон с энергией обладает массой.