Квантовая химия с большим трудом пробивала себе дорогу в лаборатории химиков-экспериментаторов. Её долго воспринимали весьма скептически, поскольку расчёты, произведённые на основе квантово-химических формул, не сходились порой с результатами классических расчётов. Это легко объяснимо – ведь основа всех вычислений в квантовой механике – уравнение Шредингера –может быть решено строго лишь для систем, состоящих из одной или двух частиц – уже молекула водорода являет собой неразрешимую задачу. Поэтому для квантово-химических расчётов применяются определённые допущения, упрощающие задачу, но не искажающие общей картины. Со временем квантово-химические методы вошли в повседневную практику современных химических изысканий. Толчком послужила компьютеризация исследований.

Впрочем, обо всём по порядку.

Рождение квантовой химии

Квантовая химия зародилась в середине 20-х годов XX столетия. Её становление шло параллельно с развитием квантовой механики, служащей фундаментом для перспективной молодой науки. Весьма любопытным является тот факт, что основные приёмы и методы квантовой химии, реализуемые в алгоритмах таких современных вычислительных программ, были разработаны за очень короткий промежуток времени – около 10 лет. Столь резкий взлёт объясняется уникальным стечением следующих обстоятельств.

Чем дальше продвигались химики в изучении строения вещества, тем больше возникало у них вопросов. Почему из атомов водорода образуются только двухатомные молекулы? Почему молекула Н2О имеет форму треугольника, а в СО2 все три атома лежат на одной прямой? Почему состоящие из углерода алмаз – изолятор, а графит – проводник? Подобный список можно продолжать до бесконечности, но ведь эти вопросы относятся к свойствам уже известных веществ, а главная задача химии – получение новых соединений с наперёд заданными, нужными человеку свойствами.

В решении всех этих проблем важную роль играет относительно молодая наука – квантовая химия, которая не просто ещё одна ветвь химии (наряду с неорганической, органической, коллоидной и другими). Она служит для них теоретическим фундаментом, а её суть состоит в применении квантовой механики для определения как структуры атомов и молекул, так и их возможных превращений.

В принципе основное уравнение квантовой механики – уравнение Шредингера – можно записать для системы, состоящей из многих ядер и электронов (то есть для атомов, молекул, ионов, кристаллов), и его решение в виде волновой функции полностью определит её строение и поведение. Основное препятствие состоит в том, что даже в случае всего двух электронов это уравнение точно не решается, а при увеличении их числа трудности многократно возрастают.

Поэтому с самого начала квантовые химики столкнулись с необходимостью ввода каких-то упрощений. Им пришлось создавать вычислительные методы, часто базирующиеся на нестрогих правилах, изобретательности и интуиции их авторов. А об эффективности метода судили по его способности объяснять уже известные факты и предсказывать новые.

Тогда не существовало единой теории, способной объяснить широкий круг химических явлений. И вот в сотрудничестве с физикой химия стала превращаться в точную науку, перенимая её математический аппарат.

Начало исследованиям в области квантовой химии положила работа Вернера Гейзенберга 1926 года. Он провёл квантово-механический расчёт атома гелия, показав возможность его существования в двух различных состояниях, введя понятие «квантово-механического резонанса».

В 1927 году Вальтер Гейтлер и Фриц Лондон приступили к разработке квантово-механической теории химической связи. Они провели первые приближённые расчёты молекулы водорода.

В 1928 году будущий нобелевский лауреат Лайнус Полинг предложил теорию резонанса, а также выдвинул идею о гибридизации атомных орбиталей. Теория резонанса, основанная на принципах квантовой механики, очень точно описывала молекулы, обладающие простыми химическими связями (связями, образованными одной парой электронов), но совершенно не подходила для моделирования поведения молекул с более сложной структурой.

Мировое признание квантовой химии

Работы В. Гейзенберга (расчёт атома гелия), а также В. Гейтлера и Ф. Лондона (расчёт молекулы водорода) послужили основой квантовой теории многоэлектронных систем. Лайнус Полинг совместно с Джоном Кларком Слейтером разработал качественную химическую теорию – метод электронных пар (более известный как метод валентных связей). Основная идея этого метода заключается в предположении, что при образовании молекулы атомы в значительной степени сохраняют свою электронную конфигурацию (электроны внутренних оболочек), а силы связывания между атомами обусловлены обменом электронов внешних оболочек в результате спаривания спинов (моментов вращения). Также им было введено новое количественное понятие электроотрицательности в 1932 году. Его работы были отмечены Нобелевской премией в 1954 году.

Примерно в это же время Дуглас Хартри, развивая теорию многоэлектронных структур, предложил метод самосогласованного поля и применил его для расчёта атомов и атомных спектров. В названном методе состояние отдельной частицы сложной системы (кристалла, раствора, молекулы и т. п.) определяется усреднённым полем, создаваемым всеми остальными частицами и зависящим от состояния каждой частицы. Тем самым состояние системы согласуется с состояниями её частей (атомов, ионов, электронов), с чем и связано название метода.

В 1930 году академик Владимир Александрович Фок развил метод Хартри, подняв планку точности расчётов.

С атомной орбиты – на молекулярную

В этот же период был разработан один из основополагающих методов квантовой химии – метод молекулярных орбиталей.

В опубликованных на тот момент Эрвином Шрёдингером, Максом Борном и Вернером Гейзенбергом подробных математических выкладках по квантовой химии содержались формулы, которые можно было использовать для описания поведения электронов в атомах. Тем не менее электронная структура молекул поддавалась анализу с очень большим трудом, и в 1927 году Р.С. Малликен, работая с Ф. Хундом в Гёттингенском университете в Германии, предположил, что атомы соединяются в молекулы в процессе, называемом образованием химических связей, таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из её важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов. Р.С. Малликен доказал, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. В 1966 году Р.С. Малликену была присуждена Нобелевская премия по химии «за фундаментальную работу по химическим связям и электронной структуре молекул, проведённую с помощью метода молекулярных орбиталей». «Метод молекулярных орбиталей означает совершенно новое понимание природы химических связей, – сказала Инга Фишер-Джалмар в своём вступительном слове от имени Шведской королевской академии наук. – Существовавшие ранее идеи исходили из представления, что образование химических связей зависит от полного взаимодействия между атомами. Метод молекулярных орбиталей, напротив, опираясь, на положения квантовой механики, отталкивается от взаимодействия между всеми атомными ядрами и всеми электронами молекулы. Этот метод внёс чрезвычайно важный вклад в понимание нами качественного аспекта образования химических связей и электронной структуры молекул».

Ещё одной жемчужиной квантовой химии стала теория кристаллического поля, предложенная немецким учёным Гансом Бете в 1929 году.

Но никто из перечисленных выше учёных не использовал название «квантовая химия» – впервые оно появилось в качестве заглавия монографии великого германо-советского учёного Ганса Густавовича Гельмана. Эмигрировав в 1934 году из Германии, он уже в 1937-м написал и издал фундаментальную монографию «Квантовая химия». Гельман независимо от нобелевского лауреата Ричарда Фейнмана вывел ряд формул, получивших название электростатической теоремы Гельмана–Фейнмана.

Ученик Гельмана, старейший квантовый химик России, сотрудник Института биоорганической химии Михаил Ковнер (1910–2006) пишет, что «эта теорема стала одним из основных инструментов квантовой химии. Но помимо своего чисто прикладного значения она представляла, можно сказать, и философский интерес. Дело в том, что Шредингер, Гейзенберг, Дирак главное внимание уделяли понятию энергии (её определению в классической и квантовой механике), а понятие силы у них отсутствовало. Однако с точки зрения принципа соответствия Бора должна существовать определённая связь между классическими и квантовыми величинами. Именно теорема Гельмана–Фейнмана вводит аналог понятия силы в квантовую механику и тем самым заполняет указанный пробел».

Ганс Гельман одним из первых предложил использовать те самые «допущения», чтобы упростить квантово-химические расчёты.

Одна из наиболее существенных трудностей при рассмотрении химических объектов с точки зрения квантовой механики заключается в том, что решения уравнения Шредингера очень сложны. С учётом того что самыми прогрессивными на тот момент вычислительными средствами были арифмометры, нетрудно представить какой сложной задачей было получение адекватного решения: в ходе приближённых вычислений неизбежно накапливались погрешности, соизмеримые с искомой величиной, и работа теряла всякий смысл. Ганс Гельман предложил использовать для решения уравнений данные, взятые из эксперимента.Таким образом, без преувеличения можно сказать, что Ганс Гельман первым разработал полуэмпирический метод решения квантово-химических задач.

Также Гельман ввёл понятие «валентного состояния», в которое переходят атомы при сближении, чем поставил теорию химических реакций на количественную основу.

Компьютерная эра квантовой химии

После Второй мировой войны начался мощный взлёт вычислительной техники. Несмотря на то что компьютеры конца 40-х – начала 50-х годов были очень громоздкими и медленными (по «электронной мощи» современный сотовый телефон превосходит все вычислительные средства, вместе взятые на начало 50-х годов), у них была одна замечательная особенность (как, впрочем, и у современных компьютеров): они могли производить однотипные операции с массивами числовых данных в объёмах, немыслих для человека. Это качество как нельзя лучше подходило для реализации численных (приближённых) расчётов.

Уже на тот момент в квантовой химии стали выделяться две тенденции: полуэмпирические методы и методы, основанные только лишь на теоретической базе, без учёта экспериментальных данных.

В полуэмпирических методах сложные, занимающие до 70 процентов компьютерного времени расчёты «интегралов межэлектронного взаимодействия» заменяются постоянными величинами, или эти интегралы просто обнуляются. Это называется параметризацией интегралов.

Качество полуэмпирических методов можно оценить по двум критериям. Во-первых, по тому, какое количество интегралов параметризуется. Во-вторых, по уровню достоверности экспериментальных данных, которые используются в параметризации.

Развитие полуэмпирических методов происходило в течение 40 лет (примерно с 1950 по 1990 год). Следует отметить, что полуэмпирические методы позволили в своё время продвинуться в исследовании механизмов химических реакций. С появлением достаточно мощных компьютеров они стали мощным инструментом в исследовании сложных химических систем.

Ко второй группе относятся методы, в соответствии с которыми вычисление проводится исключительно на теоретической базе, то есть без введения в расчётную схему каких-либо параметров, полученных экспериментальным путём. При расчёте все величины имеют конкретный физический смысл. Достоинство этих методов – высокая точность и универсальность, но они крайне сложны, поэтому их применение не было широким.

Моделировать, а не перебирать варианты!

На протяжении многих десятилетий химия оставалась наукой в основном экспериментальной. Новые вещества и новые технологии рождались в ходе многочисленных экспериментов, основанных на интуиции исследователя. И вот моделирование с помощью квантово-химических расчётов открывает химикам новые горизонты, когда, возможно, станет ненужной и сама по себе химическая лаборатория. Это относится в первую очередь к разработке эффективных и недорогих катализаторов – основы современных нефте- и газохимических технологий.

Понимание строгой взаимосвязи между молекулярной структурой вещества и его физико-химическими свойствами, в том числе и каталитической активностью, открывает перед исследователем подходы к решению целого ряда практических задач. Как известно, каталитические превращения органических и неорганических веществ лежат в основе большинства химико-технологических процессов. От катализаторов напрямую зависят объёмы выработки целевого продукта, условия проведения процесса, его аппаратное оформление и особенности технологии в целом. Нередко даже экономика производства определяется именно стоимостью катализатора и затратами на его обслуживание.

В такой ситуации одним из приоритетных направлений развития прикладной химии становится разработка научных основ поиска наиболее оптимальных катализаторов для существующих промышленно важных реакций, или же, наоборот, – подбор к уже разработанному катализатору реакции, в результате которой образуется тот или иной целевой продукт химической промышленности с высокими выходом и селективностью. Очевидно, исследователь, поставивший перед собой подобную задачу в одном из её вариантов, будет вынужден рассматривать механизмы элементарных стадий химических процессов, равно как и свойства, и строение реагирующих веществ и катализаторов на микроуровне. Значительную помощь в такой работе может оказать аппарат квантовой химии.

Квантово-химические расчёты могут подтвердить или опровергнуть существование тех или иных интермедиатов, поскольку оно обуславливается возможностью или невозможностью образования соответствующих молекулярных орбиталей. Так, обобщённый квантово-химический принцип объясняет, например, почему димеризация этилена может протекать только в присутствии катализаторов, но практически неосуществима без них.

Справка

Интермедиат (лат. intermedius – средний) – промежуточное вещество с коротким временем жизни, образующееся в ходе химической реакции и затем реагирующие далее до продуктов реакции. Ввиду того, что интермедиаты очень быстро реагируют, их концентрация в реакционной смеси очень мала. Поэтому их образование либо теоретически постулируют, либо обнаруживают при помощи современных физико-химических методов анализа.

Методы квантовой химии, реализованные в компьютерных программных продуктах, легли в основу нового подхода к исследованию свойств, веществ, для которого не требуется ни синтезировать или выделять, ни очищать от примесей, ни проводить физико-химические исследования для получения данных о свойствах химического соединения. При таком подходе к исследованию химических свойств вещества не нужна даже химическая лаборатория как таковая. Бурный прогресс в области вычислительной техники и развитие программного обеспечения привели к научной революции в этой области, и теперь можно изучать неизвестные молекулы, промежуточные соединения, переходные состояния в ходе химических реакций и даже не синтезированные пока химические структуры. Опыт проведения подобных расчётов показывает, что результатам, полученным с помощью адекватных методов, можно доверять и экспериментальная проверка их практически всегда подтверждает.

В этом году Нобелевская премия по химии была присуждена именно за моделирование сложных химических систем.

На фото: Ганс Густавович Гельман. Пионер квантовой химии

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

Кафедра физической химии и химической технологии

на тему: История развития и достижений квантовой химии

по дисциплине «История химии и химической технологии»

Выполнил: Строгонов Д.А.

Проверил: Дюльдина Э.В.

Введение

1. Квантовая механика и квантовая химия

2. Появление квантовой химии

3. Развитие квантовой химии

Заключение

Библиография

Введение

Что такое квантовая химия? Можно встретить следующее определение данной дисциплины: квантовая химия -- это современное учение о химическом и кристаллическом строении вещества, а также о взаимосвязи между строением и свойствами на основе представлений квантовой механики. Было бы огромным заблуждением считать квантовую химию сугубо теоретической наукой, поскольку она находится в неразрывной связи с данными о строении и свойствах, полученных в ходе эксперимента, а также с закономерностями, описываемыми классической теорией строения вещества. Как будет показано далее, некоторые методы включают параметры, полученные экспериментальным путем.

1. Квантовая механика и квантовая химия

Развитие научной теории проходит две стадии -- интенсивную и экстенсивную. Интенсивный этап развития заключается в выработке основных постулатов, принципов теории в ходе интерпретации, как правило, большого числа эмпирических данных. Экстенсивное развитие начинается с приложения теории к новым экспериментальным данным (что, впрочем, может сопровождаться обогащением самой теории новыми менее фундаментальными положениями).

Не избежала подобной участи и квантовая механика, возникновение которой связано с объяснением спектров атома водорода, удельной теплоемкости твердых тел, а также эмпирических законов излучения. Впоследствии постулаты квантовой механики легли в основу квантовой химии, представляющей собой на сегодняшний день симбиоз программирования и численных методов (процедур, позволяющих решать уравнения с заданной степенью точности).

Почему численные методы? Последнее обстоятельство нуждается в пояснении. Уравнение Шредингера может быть решено строго лишь для систем, состоящих из одной или двух частиц -- уже молекула водорода являет собой неразрешимую задачу. Таким образом, квантовая химия представляет не только совокупность принципов, дополняющих основные постулаты квантовой механики, но и допущения, лежащие в основе разнообразных алгоритмов и призванные снизить ресурсоемкость расчета. Из вышесказанного вытекает два основных критерия любого вычисления: точность и скорость. Разумеется, чем выше эти параметры, тем лучше. Именно это «противоречие» служит стимулом к развитию квантовой химии (и химиков теоретиков тоже).

Следует отметить, что квантовая химия была встречена представителями химии экспериментальной достаточно холодно. Основным аргументом в пользу несостоятельности данного раздела теоретической химии служит тот факт, что результаты расчета (геометрические параметры, полная энергия системы) практически любого соединения (в особенности сложного) могут существенно различаться в зависимости от применяемого метода. В свете последнего, квантово-химический расчет приобретает некоторый фиктивный оттенок. На самом деле в основу любого метода положены некоторые допущения, а потому он может адекватно описать лишь ту систему, которую эти ограничения затрагивают в наименьшей степени. Наконец, при расходящихся расчетных данных следует доверять более сложному методу.

квантовый химия кристаллический история

2. Появление квантовой химии

Квантовая химия зародилась примерно в середине 20-х годов XX столетия. Ее становление шло параллельно с развитием квантовой механики, служащей фундаментом для перспективной молодой науки. Весьма любопытным является тот факт, что основные приемы и методы квантовой химии, реализуемые в алгоритмах таких современных программ, как GAMESS или Gaussian , были разработаны за очень короткий промежуток времени -- около 10 лет. Столь резкий взлет объясняется уникальным стечением следующих обстоятельств. Во-первых, нуждался в интерпретации накопленный к тому моменту огромный экспериментальный материал: почему молекула водорода состоит из двух атомов, почему молекула воды треугольной формы, а все три атома диоксида углерода лежат на одной прямой, почему одни вещества проводники, а другие изоляторы (в частности, одна из аллотропных модификаций углерода -- графит). Тогда не существовало единой теории, способной объяснить столь широкий круг химических явлений. Во-вторых, в сотрудничестве с физикой химия стала превращаться в точную науку, перенимая ее математический аппарат.

Кратко перечислим основные достижения в данной области.

Начало исследованиям положила работа Вернера Гейзенберга 1926 года. Ученый провел квантовомеханический расчет атома гелия, показав возможность его существования в двух различных состояниях и объяснив, что отличие двух систем термов для пара- и ортогелия связано с тем, что паратермы соответствуют симметричным: а ортотермы- антисимметричным решениям волнового уравнения. Таким образом, им было введено понятие «квантовомеханического резонанса».

В 1927 году Вальтер Гейтлер и Фриц Лондон приступили к разработке квантовомеханической теории химической связи. Уже первые приближенные расчеты молекулы водорода показали:

1. ковалентную (парноэлектронную двухцентровую) связь образуют два электрона с антипараллельными спинами, то есть пребывание двух электронов с антипараллельными спинами в поле двух ядер энергетически выгоднее, чем нахождение электрона в поле своего ядра;

2. при возникновении ковалентной связи происходит увеличение электронной плотности между взаимодействующими атомами (приблизительно на 15-20 %), что приводит к уменьшению энергии системы и ее стабилизации;

3. ковалентная связь направлена в сторону максимального перекрывания электронных облаков взаимодействующих атомов (критерий наибольшего перекрывания).

В 1928 году Лайнус Карл Полинг предложил теорию резонанса, а также выдвинул идею о гибридизации атомных орбиталей. Теория резонанса была основана на принципах квантовой механики, а также на работе Джилберта Ньютона Льюиса 1916 года, который теоретически доказал, что формирование химических связей сопровождается образованием общей пары электронов между атомами в молекуле. Теория резонанса очень точно описывала молекулы, обладающие простыми химическими связями (связями, образованными одной парой электронов), но совершенно не подходила для моделирования поведения молекул с более сложной структурой. Данная теория рассматривает обобществление электронов атомами как локализированную связь, при которой каждый атом сохраняет свою основную электронную конфигурацию. Поэтому взаимное отталкивание электронов в молекулах с кратными связями невозможно описать с ее точки зрения, поскольку в данном случае обобществленные электроны занимают значительно больший объем.

Работы В. Гейзенберга (расчет атома гелия), а также В. Гейтлера и Ф. Лондона (расчет молекулы водорода) послужили основой квантовой теории многоэлектронных систем. В период с 1928 по 1931 год, опираясь на их труды, а также данные Румера, Л. К. Полинг совместно с Джоном Кларком Слейтером разработал качественную химическую теорию -- метод электронных пар (более известный как метод валентных связей). Основная идея этого метода заключается в предположении, что при образовании молекулы атомы в значительной степени сохраняют свою электронную конфигурацию (электроны внутренних оболочек), а силы связывания между атомами обусловлены обменом электронов внешних оболочек в результате спаривания спинов. Также им было введено новое количественное понятие электроотрицательности в 1932 году. Его работы были отмечены рядом наград, в том числе первым присуждением медали Джилберта Ньютона Льюиса в 1951 году и Нобелевской премией в 1954 году.

Примерно в это же время Дуглас Рэйнер Хартри, развивая теорию многоэлектронных структур, предложил метод самосогласованного поля (1927 год) и применил его для расчета атомов и атомных спектров. В названном методе состояние отдельной частицы сложной системы (кристалла, раствора, молекулы и т. п.) определяется усредненным полем, создаваемым всеми остальными частицами и зависящим от состояния каждой частицы. Тем самым состояние системы согласуется с состояниями ее частей (атомов, ионов, электронов), с чем и связано название метода. В 1930 году Владимир Александрович Фок развил метод Хартри, использовав для многоэлектронной волновой функции представление в виде слейтеровского детерминанта (в соответствии с принципом Паули учитывалась перестановочная симметрия волновых функций электронов). Выход за рамки метода самосогласованного поля обычно связывают с использованием так называемого метода конфигурационного взаимодействия.

Метод конфигурационного взаимодействия был разработан Дж. К. Слейтером в конце 20-х годов как логическое продолжение метода самосогласованного поля, который имеет существенный недостаток -- им не учитывается коррелированное движение электронов. Игнорирование этого эффекта приводит к ситуации, когда вероятность нахождения двух электронов в одной области пространства не равна нулю, что невозможно в действительности. Среднее расстояние между электронами, таким образом, занижается, а это, в свою очередь, приводит к увеличению энергии межэлектронного отталкивания.

Учет электронной корреляции в методе конфигурационного взаимодействия достигается представлением полной волновой функции в виде линейной комбинации (суперпозиции) конечного числа слейтеровских детерминантов, отвечающих различным электронным конфигурациям. Здесь под определителями Слейтера следует понимать различные способы размещения электронов по всем орбиталям. То есть, в сущности, каждый отдельно взятый детерминант передает особенности волновой функции молекулы лишь в той мере, в какой кулоновское взаимодействие всех электронов можно приближенно рассматривать как взаимодействие электрона с усредненным полем (взаимная согласованность движения электронов не описывается одним конфигурационным состоянием). В заключение следует отметить, что метод позволяет описать систему в основном и возбужденном электронных состояниях.

В этот же период был разработан один из основополагающих методов квантовой химии -- метод молекулярных орбиталей. Его творцы: Фридрих Хунд, Роберт Сэндерсон Малликен, Джон Эдвард Леннард-Джонс и Эрих Арманд Артур Йозеф Хюккель.

В опубликованных на тот момент Эрвином Шрёдингером, Максом Борном и Вернером Гейзенбергом подробных математических выкладках по квантовой химии содержались формулы, которые можно было использовать для описания поведения электронов в атомах. Тем не менее, электронная структура молекул поддавалась анализу с очень большим трудом, и в 1927 году Р. С. Малликен, работая с Ф. Хундом в Гёттингенском университете в Германии, предположил, что атомы соединяются в молекулы в процессе, называемом образованием химических связей, таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из ее важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов. Р. С. Малликен доказал, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. В 1966 году Р. С. Малликену была присуждена Нобелевская премия по химии «за фундаментальную работу по химическим связям и электронной структуре молекул, проведенную с помощью метода молекулярных орбиталей». «Метод молекулярных орбиталей означает совершенно новое понимание природы химических связей, -- сказала Инга Фишер-Джалмар в своем вступительном слове от имени Шведской королевской академии наук. -- Существовавшие ранее идеи исходили из представления, что образование химических связей зависит от полного взаимодействия между атомами. Метод молекулярных орбиталей, напротив, опираясь, на положения квантовой механики, отталкивается от взаимодействия между всеми атомными ядрами и всеми электронами молекулы. Этот метод внес чрезвычайно важный вклад в понимание нами качественного аспекта образования химических связей и электронной структуры молекул».

Помимо Нобелевской премии, Р. С. Малликен был награжден Американским химическим обществом медалью Джилберта Ньютона Льюиса (1960), медалью Теодора Уильяма Ричардса (1960), наградой Петера Дебая по физической химии (1963) и медалью Уилларда Гиббса (1965). Он был членом американской Национальной академии наук, Американской ассоциации содействия развитию науки и Американской академии наук и искусств, а также иностранным членом Лондонского королевского общества. Малликену были присуждены почетные степени Колумбийского, Маркеттского, Кембриджского и Стокгольмского университетов.

Также нельзя не упомянуть о заслугах его коллеги Ф. Хунде, который сформулировал эмпирические правила, регулирующие порядок заполнения атомных орбиталей электронами. Ввёл в 1931 году представления о pi- и sigma-электронах и о pi- и sigma-связях в молекулах. Исследовал закономерности взаимодействия угловых моментов в двухатомных структурах.

Дальнейшее развитие метода молекулярных орбиталей прослеживается в работах Дж. Э. Леннарда-Джонса, который положил начало широкому применению названного метода как линейной комбинации атомных орбиталей к расчетам органических соединений с сопряженными связями (1937 год) и к системам с sigma-связями (1949 год), а также развивал квантово-химические методы применительно к неорганическим соединениям.

Наряду с Дж. Э. Леннардом-Джонсом Э. Хюккель занимался адаптацией метода молекулярных орбиталей к непредельным в частности ароматическим соединениям: построил квантовую теорию двойных связей (1930 год), а, начиная с 1930 года, опубликовал серию работ, в которых предложил объяснение устойчивости ароматических соединений в рамках этого метода (правило Хюккеля). Согласно этому правилу, плоские моноциклические сопряжённые системы с числом pi-электронов 4n+2 будут ароматическими, тогда как такие же системы с числом электронов 4n будут неароматическими. Правило Хюккеля применимо как к заряженным, так и к нейтральным системам. Правило Хюккеля позволяет предсказать, будет моноциклическая система ароматической или нет.

Еще одной жемчужиной квантовой химии стала теория кристаллического поля, предложенная немецким ученым Хансом Альбрехтом Бете в 1929 году (его работы были посвящены спектроскопии ионов) и разрабатывавшаяся в последующие годы американским ученым Джоном Хасбруком Ван Флеком. Своё применение в химии она получила в 1950-е годы как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена. Согласно теории кристаллического поля, связь между ядром комплекса и лигандами ионная или ион-дипольная. При этом комплексообразователь рассматривается с детальным учетом его электронной структуры, а лиганды -- как бесструктурные заряженные точки, создающие электростатическое поле. Теория поля лигандов, как было сказано, являет собой продолжение теории кристаллического поля. В ней электростатическое взаимодействие дополнено идеей перекрывания орбиталей. Следует отметить, что обе теории не применимы для систем, в которых перекрывание существенно.

Но никто из перечисленных выше ученых не использовал название «квантовая химия» -- впервые оно появилось в качестве заглавия монографии великого немецкого (позднее советского) ученого Ганса Густавовича Гельмана.

Одна из наиболее существенных трудностей при рассмотрении химических объектов с точки зрения квантовой механики заключается в том, что решения уравнения Шредингера являют собой весьма замысловатую форму (точнее, форму интегральную). С учетом того, что самыми прогрессивными на тот момент вычислительными средствами были арифмометры (именно поэтому настоящий раздел носит такое название), не трудно представить какой сложной задачей было получение адекватного решения: в ходе приближенных вычислений неизбежно накапливались погрешности, соизмеримые с искомой величиной, и работа теряла всякий смысл. Ганс Гельман заметил, что некоторые измеряемые тепловые характеристики реакции имеют интегральную форму. Подобные интегралы встречаются в выражениях, характеризующих спектральные характеристики атомов и молекул. То есть для интересующих нас интегралов можно составить уравнения, в которые входят параметры, взятые из эксперимента. Таким образом, без преувеличения можно сказать, что Ганс Гельман первым разработал полуэмпирический метод решения квантово-химических задач.

Еще одной из многочисленных заслуг ученого является оценка влияния так называемого «остова» (внутренних электронов атома) на энергию системы посредством особой потенциальной функции. Гельман показал, что химические свойства атома определяются соотношением чисел внешних и внутренних электронов в нем. До него «остов» вовсе не принимали во внимание.

Также Гельман ввел понятие «валентного состояния», в которое переходят атомы при сближении, чем поставил теорию химических реакций на количественную основу.

Гельманом была раскрыта роль принципа Паули во взаимодействии атомов: именно этим запретом обусловлена сила отталкивания, возникающая при перекрывании оболочек взаимодействующих атомов.

Главным вкладом исследователя в квантовую химию (помимо монографии) нужно признать теорему, носящую его (и Фейнмана) имя.

Квантовая механика позволяет вычислить полную энергию молекул как функцию длин связей, а также валентных и диэдральных углов. Вторая производная энергии по внутренней координате дает кривизну (выпуклость или вогнутость поверхности потенциальной энергии) и силовые постоянные. Теорема Гельмана-Фейнмана позволяет вычислить эти параметры. Теорема представляет еще и философский интерес, поскольку через нее вводится понятие силы в квантовую механику, и, тем самым, восстанавливается связь между классическими и квантовыми величинами.

3. Развитие квантовой химии

Деление истории квантовой химии на два периода выбрано не случайно. Так вышло, что вторая мировая война, унесшая миллионы человеческих жизней и обратившая в руины города Европы, обернулась мощным стимулом для развития естественных наук и техники. Это в первую очередь касается ЭВМ. Несмотря на то, что компьютеры конца 40-х начала 50-х годов были очень громоздкими и медленными (по «электронной мощи» современный сотовый телефон превосходит все вычислительные средства, вместе взятые на начало 50-х годов), у них была одна замечательная особенность (как впрочем, и у современных компьютеров): они могли производить однотипные операции с массивами числовых данных в объемах, немыслих для человека. Это качество как нельзя лучше подходило для реализации численных (приближенных) расчетов.

Уже на тот момент в квантовой химии стали выделяться две тенденции:

1. полуэмпирические методы;

2. ab initio методы.

Полуэмпирические методы

Полуэмпирические методы, являясь противоположностью методов ab initio , включают в себя параметры, полученные экспериментальным путем (например, из спектроскопии или при определении потенциала ионизации из различных электронных состояний). Это до некоторой степени роднит их с методами молекулярной механики (следует отметить, что последние не являются квантово-химическими методами).

При знакомстве с этой группой методов как само собой разумеющееся, возникают такие вопросы: что заменяют эмпирические параметры? насколько быстрее полуэмпирические методы по сравнению с ab initio . Чтобы ответить на них, обратимся к структуре расчета. Примерно 70% всего времени тратиться на вычисление интегралов межэлектронного взаимодействия. С увеличением размеров системы число таких интегралов растет экспоненциально. Соответственно растет время и стоимость расчетов. В рассматриваемой группе методов это преодолевается путем замены некоторых интегралов постоянными величинами (или даже их обнулением).

Из вышесказанного можно сделать вывод: качество полуэмпирических методов можно оценить по двум критериям. Во-первых, по тому, какое количество интегралов параметризуется. Во-вторых, по уровню достоверности экспериментальных данных, которые используются в параметризации.

Наконец, следует отметить, что существуют так называемые всевалентные методы, способные описывать широкий круг соединений, в противовес например, методу Хюккеля, применимому исключительно для описания молекул с сопряженной pi-системой электронов.

Развитие полуэмпирических методов происходило в течение 40 лет (примерно с 1950 по 1990 год). Одной из первых появилась работа Парра (1952 год). Она была посвящена методу нулевого дифференциального перекрывания -- NDO (Neglect of Differential Overlap). Метод основан на том, что многие интегралы кулоновского отталкивания почти равны нулю. Интегралы перекрывания атомных орбиталей и вовсе обнуляются. Остовные интегралы (они характеризуют энергию электрона в поле голых ядер) рассматривают как варьируемые параметры. Как итог, приближение NDO превращает громоздкие четырехцентровые интегралы (они характеризуют атомные орбитали, принадлежащие нескольким атомам) в двухцентровые, что значительно снижает ресурсоемкость процесса.

Упомянутый выше метод был реализован по-разному. Так в 1965 году Джоном Поплом было предложено полное пренебрежение дифференциальным перекрыванием -- CNDO (Complete Neglect of Differential Overlap) . Опуская подробности реализации данного подхода, отметим, что он неплохо проявляет себя в расчете электронного распределения и электронных спектров химических соединений. Необходимо отметить, что данное приближение морально устарело и в настоящее время не используется. Последний метод был усовершенствован сокращением числа параметризуемых интегралов. Данный подход получил название частичного пренебрежения дифференциальным перекрыванием -- INDO (Intermediate Neglect of Differential Overlap) . Преимуществом приближения является возможность описания систем с открытыми оболочками. Недостаток -- принципиальная невозможность восстановления профиля поверхности потенциальной энергии, и, как следствие, неосуществимость описания механизма реакции. Несколько позже этот недостаток преодолел Майкл Джеймс Стюарт Дьюар.

В конце 70-х годов появляются работы по методам, основанным на пренебрежении двухатомным дифференциальным перекрыванием -- NDDO (Neglect of Diatomic Differential Overlap). Этот подход реализован М. Дж. С. Дьюаром в 1977 году в методе MNDO и в 1985 году в методе AM1. Позднее (в 1989 году) Дж. Стюарт незначительно улучшил метод AM1, повысив качество параметризации (использовался набор соединений с надежно измеренными экспериментальными свойствами). Его приближение получило название PM3.

В заключение следует отметить, что полуэмпирические методы позволили в свое время продвинуться в исследовании механизмов химических реакций. С появлением достаточно мощных компьютеров они стали мощным инструментом в исследовании таких систем, как фрагменты ДНК и белка.

Ab initio методы

В переводе с латинского ab initio означает «из первых принципов». Действительно, к данной группе относятся методы, в соответствии с которыми вычисление проводится исключительно на теоретической базе, то есть без введения в расчетную схему каких-либо параметров, полученных экспериментальным путем. При расчете все величины имеют конкретный физический смысл. Такими методами являются: метод Хартри-Фока-Рутаана, разнообразные вариации конфигурационного взаимодействия, методы теории возмущения, а также метод объединенных кластеров. К преимуществу данного подхода следует отнести приемлемую точность расчета, относительную универсальность. Недостатком же является ресурсоемкость процедуры, поэтому группа ab initio методов стала применяться химиками позднее методов полуэмпирических (точнее, они находили применение, но лишь к простейшим системам, не намного превосходившим по сложности молекулу водорода).

По причинам, упомянутым ранее, данная группа расчетных схем долгое время была в забвении. Одним из первых реализован метод Хартри-Фока-Рутаана («Новые разработки в теории молекулярных орбиталей», 1951 год). Затем двумя годами позже он был доработан Джоном Поплом и Р. К. Несбетом (их работа посвящена радикалам). Хотя этим методом не учитывается коррелированное движение электронов, он явился отправной точкой для так называемых пост-хартри-фоковских методов (методов учета электронной корреляции).

Одной из первых пост-хартри-фоковских схем была теория возмущения Меллера-Плессе. Сама теория возмущения применялась и раньше физиками и математиками, однако к задачам квантовой химии она была адаптирована в 1934 году (в форме концепции), реализована позднее метода Хартри-Фока-Рутаана. Суть подхода заключается в том, что система делится на две части. Первая, упрощенная, точно решаема, тогда как вторая рассматривается в виде возмущения первой. Существенным достоинством данной теории является то, что поправки к полной энергии системы, вычисленные в приближении хартри-фока, находятся неитерационным способом, то есть отсутствует необходимость многократного повторения большого объема расчетов для достижения самосогласованного решения. Дальнейшее развитие теории продолжалось на протяжении второй половины XX-го века и шло в направлении более полного учета корреляционной энергии. Так основные работы по теории возмущения второго порядка (MPPT2), учитывающей 60 -- 90 % корреляционной энергии, относятся к 70-м годам.

Другой способ учета электронной корреляции являет собой теория объединенных кластеров. Если методы теории возмущения заключаются в добавлении к основному хартри-фоковскому решению однократных, двукратных и трехкратных возбуждений, то метод теории объединенных кластеров основан на включении всех поправок данного типа вплоть до бесконечных порядков теории. Теория совершенствовалась с 70-го по 90-й годы. Некоторые разновидности методов теории объединенных кластеров в состоянии учесть до 99 % энергии электронной корреляции при разумных вычислительных затратах. Наиболее известный из разработчиков данного подхода -- Джон Попл.

Третьим и одним из самых поздних подходов является конфигурационное взаимодействие. Его принцип был рассмотрен в предыдущем разделе. Метод «обрел жизнь» в 80-е годы и развивался вплоть до 2000-го года в трудах Джона Попла, Р. Зигера и Р. Кришнана (одна из первых работ -- «Методы вариационного конфигурационного взаимодействия -- сравнение с теорией возмущения», 1977 год). Изначальным недостатком приближения было отсутствие размерной согласованности (совокупная энергия двух молекул, разделенных очень большим расстоянием, не равна сумме энергий этих же молекул, рассчитанных по отдельности) и размерной протяженности (рост погрешности расчета с увеличением числа частиц, входящих в систему). Первый изъян был устранен в 1987 году в работах упомянутых выше ученых добавлением квадратичных членов более высокого порядка (поправки Девидсона). К сожалению, второй недочет для данной группы методов устранен не был [исключение составляет метод полного конфигурационного взаимодействия (FullCI)].

Завершая описание ab initio методов, следует отметить, что в своих наиболее совершенных (и затратных) формах выражения для волновой функции описанных выше трех пост-хартри-фоковских приближений практически совпадают.

До последнего момента рассматривались методики решения уравнения Шредингера, но ничего не говорилось о форме волновой функции. Волновую функцию было принято рассматривать в качестве линейной комбинации достаточно простых функций (например, функции Гаусса), называемой базисом или базисным набором. Каждая функция характеризуется некоторым числом подгоночных коэффициентов, обеспечивающих гибкость базиса. В соответствии с вариационным принципом, чем больше базисных функций, тем более точные решения могут быть получены. Но не стоит забывать о временных затратах: чем больше базисных функций (чем более гибкий базисный набор), тем больше времени потребуется для решения уравнения Шредингера.

Одним из первых появился минимальный базисный набор. Он был разработан под началом Р. Ф. Стюарта и Джона Попла в 1969 году. В данном базисе осуществляется представление атомных орбиталей слетеровского типа в виде комбинации гауссовых функций. Наиболее популярным в свое время был минимальный базисный набор STO-3G. Данный базис достаточно экономичен, но обладает одним существенным недостатком -- он очень жесткий, не способен подстраивать свой размер в зависимости от окружения атома, и характеризуется практически сферическим распределением заряда. В свете последнего погрешность расчета закономерно увеличивается с усложнением электронной структуры.

Более совершенными являются валентно-расщепленные базисные наборы. Они представляют атомную орбиталь в виде двух валентных функций одинаковой симметрии. Одна из них является более сжатой, а другая -- диффузной. Наиболее распространенными базисами этого типа являются 3-21G и 6-31G. Валентно-расщепленные базисные наборы были описаны в Работе Дж. С. Бинкли, Джона Попла и В. Дж. Гера 1980 года «Базисные наборы малого валентного расщепления для элементов второго периода».

Дальнейшим усовершенствованием базисных наборов было введение поляризационных базисных функций. Причиной этого послужил недостаток, присущий предыдущей группе базисов и заключающийся в том, что центр тяжести отрицательного заряда совпадает с ядром атома, но это не всегда так.

Среди поляризационных базисных наборов получил распространение 6-31G(d).

Описанные выше базисные наборы хорошо моделируют электронейтральные системы, то есть молекулы, у которых электроны прочно удерживаются ядрами. В анионах же электрон очень слабо связан с ядром, что проявляется в значительном удалении электронной плотности от него. По этой причине в базисный набор включают диффузные функции s- и p-типа с малыми значениями экспоненциальных коэффициентов, что обусловливает большой размер и удаленность этих функций от ядра. Такие функции обозначают символом «+». В качестве примера можно привести базисный набор, включающий как поляризационные, так и диффузные функции -- 6-31+G(d).

Методы теории функционала плотности

Каждый из описанных ранее подходов был ориентирован либо на скорость (полуэмпирические методы), либо на точность (ab initio методы) расчетов. Во многом благодаря развитию химии высокомолекулярных соединений и биохимии объект вычислений -- молекула -- неуклонно рос в размерах, а методов, способных моделировать большие молекулярные структуры с высокой точностью не было. Нужны были нестандартные решения, делающие задачу выполнимой не за счет совершенствования собственно вычислительной процедуры, а за счет радикального упрощения самой математической модели.

Такое положение дел, разумеется, не устраивало исследователей, и в 60-е годы начались работы по изучению электронной плотности (до этого момента использование данной характеристики для описания квантовой системы было скорее интуитивным). Но почему электронная плотность столь привлекательна? Во-первых, она физически определена и измеряема в отличие от волновой функции, не имеющей физического смысла. Во-вторых, получение полной волновой функции электронов -- задача, соответствующая 3n-измерениям (или даже 4n, если принимать во внимание спин), где n-полное число электронов, тогда как электронная плотность есть функция от трех координат независимо от числа электронов в молекуле. Здесь основная сложность заключается в том, существует ли взаимосвязь между электронной плотностью и энергией, и какова форма зависимости, если она существует?

Все началось с работ П. Хоэнберга и В. Кона, которые доказали теорему о свойствах электронной плотности («Негомогенный электронный газ», 1964 год) . Согласно теореме энергия основного состояния молекулы является функционалом электронной плотности и энергия минимальна, если она (электронная плотность) является точной для основного состояния (функционал -- соответствие числового ряда функции, которая, в свою очередь сопоставлена другому числовому ряду). Следует отметить, что теорема, являя строгое доказательство связи полной энергии с электронной плотностью, не дает никакого правила в построении этого же функционала (о его формах речь пойдет чуть позже).

Методы теории функционала плотности стали использоваться после внедрения в расчетную схему орбиталей, предложенных У. Коном и Л. Дж. Шамом в 1965 году (работа называлась «Самосогласованные уравнения, включающие обменные и корреляционные эффекты»). Основная идея теории состоит в разделении функционала кинетической энергии на две части, первая вычисляется точно с использованием формально построенных орбиталей, отвечающих системе невзаимодействующих электронов, вторая представляет собой поправку. Таким образом, описание молекулярной системы практически полностью соответствует хартри-фоковскому (что, несомненно, следует отнести к достоинству). Но не стоит забывать, что данные орбитали сконструированы лишь так, чтобы давать наилучшее описание электронной плотности, и имеют мало общего с хартри-фоковскими орбиталями.

Спустя некоторое время (конец 70-х годов) было разработано приближение локальной плотности -- простейшая форма теории. Это приближение основывается на том, в каждой точке молекулы с характерной для нее электронной плотностью свойства те же, что и в однородном электронном газе с той же плотностью. Общим случаем локальной плотности является приближение локальной спиновой плотности (LSDA -- Local Spin Density Approximation). Точность методов, основанных на LSDA, сопоставима с методами Хартри-Фока.

Другим более совершенным является приближение градиентной коррекции (GGA -- Generalized Gradient Approximation). В данном случае корреляционный и обменный потенциалы, образующие функционал, связаны не только с электронной плотностью, но и с первой и второй производной от нее. Вначале было предложено несколько функциональных зависимостей в виде поправок к LSDA (например, обменная поправка Бекке, 1988 год). Практически в то же время был предложен ряд функционалов с градиентной коррекцией в чистом виде. Один из наиболее удачных функционалов данной группы был предложен К. Ли, В. Янгом и Р. Г. Паром (LYP, 1988 год).

Третью и наиболее совершенную форму являет группа гибридных методов. Они вобрали в себя лучшее из приближений локальной плотности и градиентной коррекции и получи широкое распространение благодаря феноменально низким временным затратам в сочетании с точностью, которая сопоставима с точностью лучших ab initio методов (MP4(SDQ), QCISD и CCSD).

В заключение хотелось бы отметить, что методы теории функционала плотности позволили получить ряд электрофизических характеристик (дипольные моменты молекул и внешние электростатические поля), прогнозы спектров в диапазоне от далекой ИК-области до УФ, изучение путей химических реакций с высокой степенью точности. Столь впечатляющие результаты не остались без внимания шведской академии наук, и в 1998 году Нобелевскую премию разделили Джон Попл «за развитие вычислительных методов в квантовой химии» и Уолтер Кон «за развитие теории функционала плотности».

Заключение

На развитие квантовой химии (впрочем, как и любой другой дисциплины) влияет несколько факторов:

1. задачи, которые ставят перед собой химики;

2. возможности вычислительных средств (персональных компьютеров, кластеров и др.);

3. ресурсоемкость процедуры.

Объектом исследования современной химии являются фрагменты белка, ДНК, кластерные системы, кристаллические структуры, полимеры. Все эти системы характеризуются неисчислимо большим количеством электронов, а это, в свою очередь, накладывает сильные ограничения на ресурсоемкость современных процедур расчета. С учетом этого единственно применимыми оказываются методы теории функционала плотности (со столь громоздкими системами могут справиться еще и методы молекулярной механики, характеризующиеся, впрочем, куда более низкой точностью). Поэтому в ближайшие годы (или даже десятилетия) приоритет сохранится за методами теории функционала плотности, хотя не исключено появление методов, в основе которых лежат совершенно иные принципы.

Содержание последних двух факторов поможет ответить на вопрос: останется ли квантовая химия самостоятельной дисциплиной в ближайшие годы? Иначе говоря, станут ли процедуры расчета достаточно прозрачными для химиков-экспериментаторов? К сожалению, для получения адекватных данных необходимо быть достаточно компетентным в отношении современной вычислительной техники (знать ее возможности) и постоянно дорабатываемых алгоритмов, что переводит квантовую химию в разряд физических дисциплин и, разумеется, отдаляет ее от уже сформировавшихся разделов химии. «Отчуждение» может пойти на спад лишь при повышении уровня математической подготовки современных специалистов-химиков.

Библиография

1. В. И. Кузнецов. Диалектика развития химии. М., «Наука», 1973

2. Я. А. Угай. Валентность, химическая связь и степень окисления -- важнейшие понятия химии. Воронежский государственный университет, 1997

3. В. А. Волков, Е. В. Вонский, Г. И. Кузнецова. Выдающиеся химики мира. М., «Высшая Школа», 1991

4. И. Майер. Избранные главы квантовой химии. Доказательства теорем и вывод формул. М., «Бином. Лаборатория знаний», 2006

5. М. Дж. С. Дьюар. Теория молекулярных орбиталей в органической химии. М., «Мир», 1972

6. Г. Г. Гельман. Квантовая химия. «ОНТИ НКТП СССР», 1937

7. И. Харгитаи. Откровенная наука. Беседы со знаменитыми химиками. М., «УРСС», 2003

8. М. Дьюар, Р. Догерти. Теория возмущения молекулярных орбиталей в органической химии. М., «Мир», 1977

9. В. И. Минкин, Б. Я. Симкин, Р. М. Миняев. Квантовая химия органических соединений. Механизмы реакций. М., «Химия», 1986

Размещено на Allbest.ru

Подобные документы

    Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.

    лекция , добавлен 18.10.2013

    Роль физической химии и хронология фундаментальных открытий. Экспериментальные основы квантовой механики. Корпускулярно-волновая природа излучения. Волны материи и простейшие полуклассические модели движений. Квантование энергии частицы и формула Бора.

    реферат , добавлен 28.01.2009

    История и основные этапы зарождения и развития современной химии, ее главные проблемы в XXI веке, тенденции и анализ дальнейших перспектив. Особенности использования достижений в области данной науки в процессе решения энергетических проблем общества.

    реферат , добавлен 16.06.2014

    Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат , добавлен 30.10.2009

    Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат , добавлен 20.11.2006

    Химия как наука о веществах, их строении, свойствах и превращениях. Основные понятия химии. Химическая связь как взаимодействие двух атомов, осуществляемое путем обмена электронами. Сущность химических реакций, реакции окисления и восстановления.

    реферат , добавлен 05.03.2012

    Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат , добавлен 11.03.2009

    Общие тенденции развития современной химии. Основные направления развития химии в ХХI. Компьютерное моделирование молекул (молекулярный дизайн) и химических реакций. Спиновая химия. Нанохимия. Фемтохимия. Синтез фуллеренов и нанотрубок.

    курсовая работа , добавлен 05.06.2005

    Краткая история возникновения химии как важнейшей отрасли естествознания и науки, изучающей вещества и их превращения. Алхимия и первые сведения о химических превращениях. Описание вещества, атомная, математическая химия и родоначальники российской химии.

    курсовая работа , добавлен 25.04.2011

    От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

Лауреатами Нобелевской премии по химии 1998 года стали американские ученые Уолтер Кон и Джон Попл: Нобелевский Комитет отдал должное вычислительным методам квантовой химии.Работы лауреатов, выполненные в 60х годах, стали фундаментальным вкладом в теорию взаимодействия атомов в молекулах и поведения молекул, в их моделирование. А что же наши ученые? Как развивалась квантовая химия в СССР, а потом и в России?

Квантовая химия выделилась и развивалась в нашей стране в общем русле работ, проводившихся в ведущих научных школах мира. Её основу составляет квантовая механика, так что подчас квантовую химию называют квантовой механикой молекул. На самом же деле она включает гораздо более широкий круг проблем, чем собственно квантовая механика молекул, опираясь в своих построениях и на богатейший спектр экспериментальных химических исследований, и на те многочисленные закономерности, которые сформулированы в рамках теоретических представлений химии.

Тем не менее, математическая основа квантовой химии определяется аппаратом квантовой механики, основное уравнение которой ввел в 1926 г. Э. Шрёдингер . Последовавшее за этим бурное развитие идей квантовой механики привело к тому, что уже в 1930 году В. А. Фок получил систему одноэлектронных уравнений, которая была впоследствии названа уравнениями Хартри - Фока и которая предопределила развитие квантовой химии на многие годы вперед. Практически одновременно эти уравнения были получены и американским ученым Дж.Слэтером . И по сей день они используются либо непосредственно для молекулярных расчетов, либо являются исходной ступенью для различных квантовохимических методов более высоких приближений.

В прошлом году исполнилось 100 лет со дня рождения В. А. Фока . Этот юбилей широко отметили в Санкт-Петербурге и Москве, где, в частности, прошла совместная юбилейная сессия секций физики и химии Академии естественных наук России. В Новгороде при поддержке РФФИ прошла школа-конференция по квантовой химии, также посвященная этому юбилею.

Школа теоретиков, сложившаяся в Ленинградском государственном университете под руководством В. А. Фока, всегда занималась изучением атомных и молекулярных проблем, в частности расчетами электронной структуры, оптических переходов, электрических, магнитных и других свойств атомов и молекул. Из этой школы вышли многие хорошо известные во всем мире ученые, такие как М. Г. Веселов, М. И. Петрашень, Ю. Н. Демков, А. А. Киселев, Т. К. Ребане, А. В. Тулуб и многие другие, активно работающие и сегодня не только в Санкт-Петербурге, но и в других городах России и СНГ.

В Москве предпосылки для создания школы квантовой химии появились в 1931 году, когда в физико-химическом институте им. Л. Я. Карпова профессор Ивановского политехнического института Я. К. Сыркин основал лабораторию строения вещества и спектроскопии. В 1934 г. по рекомендации выдающегося физика Ю. Б. Румера в Москву приехал молодой немецкий ученый Г. Г. Гельман , автор вышедшей в 1937 году монографии "Квантовая химия", ставшей основным учебником по квантовой химии для нескольких поколений теоретиков, и автор фундаментальной теоремы квантовой химии -- теоремы Гельмана - Фейнмана (позднее американский физик Р. Фейнман сформулировал её независимо).

Первые шаги московской школы квантовой химии были связаны именно с физико-химическим институтом, в котором работали такие выдающиеся ученые, как Я. К. Сыркин, М. Е. Дяткина, В. Ф. Мамотенко, а в послевоенные годы - такие талантливейшие ученые, как А. А. Овчинников, И. Г. Каплан, В. В. Толмачев , создавшие впоследствии свои научные школы.

В 1946 году появилась книга Я. К. Сыркина и М. Е. Дяткиной "Химическая связь и строение молекул" - первая в нашей стране монография, в которой обсуждались вопросы строения различных классов неорганических и органических соединений на базе квантовохимических представлений того времени. Следует отметить, что М. Е. Дяткина была не только выдающимся специалистом в области квантовой химии, обладавшим замечательной интуицией, она была и удивительным педагогом, блестяще читавшим лекции студентам и сотрудникам многих институтов. Дяткина первая в стране начала расчеты сложных по тем временам органических и элементоорганических соединений (типа ферроцена) на основе метода молекулярных орбиталей

Бурное развитие квантовохимических исследований не только в Москве и Ленинграде, но и в других городах страны произошло в послевоенные годы. Появилась группа квантовой химии в Институте химической физики Академии наук СССР, которую возглавил Н. Д. Соколов, начавший теоретические исследования межмолекулярных взаимодействий и, прежде всего, водородной связи. Впоследствии многие годы он возглавлял все направление квантовой химии в стране.

Эта же группа под руководством С. И. Ветчинкина провела широкий круг исследований по теории оптических, фото- и рентгеноэлектронных спектров молекул, что повлекло за собой открытие новых механизмов усиления интенсивностей переходов и деградации энергии возбуждения, а также развитие многих аспектов теории элементарных процессов в газовой фазе. Последнее привело, в частности, к созданию в Институте химической физики лаборатории теории элементарных процессов в газах, которую возглавил Е. Е. Никитин.

Под руководством Я. К. Сыркина была создана группа по квантовой химии (далее преобразованная в лабораторию) в Институте общей и неорганической химии им. Н. А. Курнакова, положившая начало расчетам неорганических и координационных соединений. Из этой группы вышли такие замечательные специалисты, как Е. М. Шусторович, А. А. Левин (ныне глава лаборатории квантовой химии) и О. П. Чаркин . В ней же работала и М.Е. Дяткина. Под руководством А. А. Левина были начаты работы по квантовой химии твердого тела, которые продолжаются и в настоящее время; ему же принадлежит и первая монография в этой области ("Введение в квантовую теорию твердого тела"), изданная в 1974 г.

Отмечу, что квантовой химией твердого тела активно занимались и в санкт-петербургской школе, где под руководством Р. А. Эварестова был развит новый метод квантово-химического моделирования твердых тел.

В середине 50-х годов появился большой коллектив теоретиков в Вильнюсе (в Вильнюсском государственном университете - под руководством А.Б. Болотина и в Институте физики и математики АН ЛитССР - под руководством А.П. Юциса ), который разработал многие вопросы теоретико-группового анализа многоэлектронных систем, развил методы учета симметрии при расчетах больших органических молекул и методы расчета молекулярных интегралов, необходимых для неэмпирических расчетов молекул. Здесь же было подготовлено большое число специалистов по квантовой химии, работающих и поныне во многих городах нашей страны и за рубежом. Всесоюзное совещание по квантовой химии, которое состоялось в Вильнюсе в 1962 г., впервые собрало столь широкий круг специалистов, который до тех пор не удавалось собрать.

Большую роль в развитии квантовой химии сыграла организация в Киеве Института теоретической физики под руководством А. С. Давыдова и создания в нем отдела квантовой химии, который возглавил Ю.А.Кругляк.

Создание Академгородков в Новосибирске и Пущино, Дальневосточного научного центра сопровождалось быстрым появлением новых научных групп, занимающихся квантовой химией. В Новосибирске эти группы работали в целом ряде институтов. На сегодняшний день наиболее сильная из них -- лаборатория в Институте катализа СО РАН, возглавляемая Г. М. Жидомировым. Основное направление исследований этой лаборатории -- разработка расчетных методов и проведение расчетов систем, моделирующих адсорбционный комплекс на поверхности различных катализаторов. В этой же лаборатории Б. Н. Плахутин ведет уникальные работы по изучению структуры различных вариантов уравнений Хартри - Фока.

Сильные квантово-химические группы работали во многих городах страны, например в Дальневосточном государственном университете (под руководством В. И. Вовны ), в Иркутском государственном университете (под руководством Н. М. Витковской ), Ивановском химико-технологическом институте (под руководством К. С. Краснова и далее В. Г. Соломоника ). В 1945-1960 г.г.. начались работы по квантовой химии в Новгороде, Саратове, Томске, а также во многих республиках Советского Союза. Позже, в 60-е годы, были созданы крупные группы в Донецке (Донецкий научный центр АН УССР, под руководством М. М. Местечкина ) и в Ростове-на-Дону (Ростовский государственный университет им. А. А. Жданова, под руководством В. И. Минкина) . Если группа в Донецке была прежде всего нацелена на решение собственно квантовохимических задач (таких как исследование стабильности решений уравнений Хартри - Фока, использование матриц плотности и др.), то группа в Ростове имела четкую направленность на расчет и объяснение свойств органических соединений, на разработку теории строения неклассических структур и изучение механизмов органических реакций на основе тщательного анализа особенностей потенциальных поверхностей этих реакций. Сейчас эта группа представляет у нас в стране наиболее сильное квантово-химическое направление в изучении механизмов органических реакций. В этой же группе были начаты работы, объединяющие статистический и квантово-химический подходы при анализе структуры растворов.

Многоплановые исследования потенциальных поверхностей для химических реакций и разработка методов оценки возможных механизмов реакций органических соединений, а также квантово-химические расчеты параметров спин-спинового взаимодействия были выполнены на химическом факультете Московского университета под руководством Ю. А. Устынюка. Эти исследования успешно продолжаются и по сей день.

Квантово-химический анализ механизмов химических реакций, особенно реакций, протекающих в жидкой среде, потребовал создания новых методов, учитывающих реактивное поле среды, окружающей реагирующие молекулы, что и было сделано в работах М. В. Базилевского и его сотрудников в Научно-исследовательском физико-химическом институте им. Л. Я. Карпова.

В 1960 г. в лаборатории молекулярной спектроскопии химического факультета Московского государственного университета под руководством В. М. Татевского возникла группа квантовой механики молекул, которую с 1969 г. возглавил Н. Ф. Степанов, и которая к настоящему времени выросла в один из наиболее мощных центров квантовой химии в нашей стране. Здесь же готовят значительную долю кадров по квантовой химии, которых можно встретить, не только в отечественных институтах и университетах, но и за рубежом.

Для обеспечения неэмпирических квантово-химических расчетов малых молекул в группе впервые в нашей стране был создан уникальный комплекс программ, позволивший проводить расчеты на основе метода Хартри - Фока, метода конфигурационного взаимодействия, теории возмущений и многоконфигурационного метода самосогласованного поля. Помимо анализа ряда общих методических вопросов и расчетов электронной структуры молекул, в том числе в возбужденных электронных состояниях (А. И. Дементьев, В. И. Пупышев, А. В. Зайцевский) в группе были развиты новые методы исследования структуры колебательно-вращательного спектра высокосимметричных молекул (Б. И. Жилинский) , позволившие объяснить и обнаружить ряд новых эффектов во вращательных спектрах. В последние годы активно развиваются методы анализа и расчета характеристик эволюции возбужденных состояний слабосвязанных молекулярных комплексов (А. А. Бучаченко).

Представленное выше перечисление основных квантовохимических групп и направлений, будучи весьма беглым и неполным, отчетливо показывает многообразие интересов специалистов в области квантовой химии, работавших в нашей стране до 90- х годов. К сожалению, сегодня многие специалисты оказались за рубежом.

В то же время из этого перечисления видно, что в Советском Союзе и России квантовые химики всегда активно интересовались проблемами методического плана: создание новых методов, анализ возможностей этих методов, структура получающихся решений, устойчивость этих решений при малых изменениях параметров молекулярной системы и т.п. Напомню, что фактически методы конфигурационного взаимодействия и многоконфигурационного самосогласованного поля были развиты А. П. Юцисом и его школой, а также Г. Г. Дядюшей и В. А. Куприевичем . Ряд полуэмпирических методов был также разработан в нашей стране И. А. Мисуркиным, А. А. Багатурьянцом и др. На ранних этапах развития квантовой химии широко использовался метод свободного электрона, в анализе которого существенная роль также принадлежит нашим ученым.

Слабое развитие вычислительной техники, необходимой для решения весьма сложных расчетных задач, всегда выступало определенным тормозом для развития квантовой химии в нашей стране, что привело к несколько гипертрофированному (существующему в какой-то мере и по сей день) увлечению полуэмпирическими методами квантовой химии. Эти методы, каждый из которых имеет вполне ограниченную область применимости, требуют достаточно осторожного с ними обращения, что не всегда осознается работающими с ними химиками.

Потеря многих специалистов высочайшего класса, уехавших в другие страны, и постоянная потеря молодых специалистов, получающих здесь университетское образование в области квантовой химии, и уезжающих для дальнейшей учебы и работы за рубеж, также не способствуют активному развитию квантовой химии в России, что приводит к снижению объема и отчасти общего уровня работ. Отрадно лишь то, что ведущие квантово-химические центры страны пока что сохраняют свое положение мировых центров развития квантовой химии, ибо по сей день они находятся в тесном контакте с лучшими научными школами квантовой химии других стран.

К сожалению, многие работы российских ученых, прежде всего работы В. А. Фока, остались вне внимания Нобелевского комитета, хотя присуждение в 1998 г. Нобелевской премии по химии двум выдающимся специалистам по квантовой химии - Уолтеру Кону ("за развитие теории функционала плотности") и Джону Поплу ("за развитие вычислительных методов квантовой химии"), а ещё ранее Лайнусу Полингу, Роальду Хофману и Кеничи Фукуи - свидетельство признания мировой химической наукой той выдающейся роли квантовой химии, которую она играет в общем ансамбле химических исследований, как создатель единой основы современных химических представлений.

Н.Ф. Степанов
Московский Государственный Университет им. М.И. Ломоносова

Квантовая химия - это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики . Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближенные методы расчета. С квантовой химией неразрывно связана вычислительная химия - дисциплина, использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчета молекулярных свойств, амплитуды вероятности нахождения электронов в атомах , симуляции молекулярного поведения.

Энциклопедичный YouTube

    1 / 5

    ✪ Квантовая химия (рассказывает химик Иван Бушмаринов)

    ✪ 15x4 - 15 минут о квантовой химии

    ✪ Введение к квантовую химию

    ✪ Урок 3.3. Глубины материи. Квантовая механика в зеркале химии. Химические связи

    ✪ строение АТОМА ➽ физика и химия ➽ Видеоурок

    Субтитры

Общие сведения

Основной задачей квантовой химии является решение уравнения Шредингера и его релятивистского варианта (уравнение Дирака) для атомов и молекул. Уравнение Шредингера решается аналитически лишь для немногих систем (например, для моделей типа жёсткий ротатор (модель, описывающая линейные молекулы с постоянным межъядерным расстоянием. В такой модели уровни энергии зависят только от вращательного квантового числа.), гармонический осциллятор , одноэлектронная система). Реальные многоатомные системы содержат большое количество взаимодействующих электронов, а для таких систем не существует аналитического решения этих уравнений, и, по всей видимости, оно не будет найдено и в дальнейшем. По этой причине в квантовой химии приходится строить различные приближённые решения. Из-за быстрого роста сложности поиска решений с ростом сложности системы и требований к точности расчёта, возможности квантовохимических расчётов сильно ограничиваются текущим развитием вычислительной техники, хотя, наблюдаемые в последние два десятилетия революционные сдвиги в развитии компьютерной техники, приведшие к её заметному удешевлению, заметно стимулируют развитие прикладной квантовой химии. Решение уравнения Шредингера часто строится на уравнении Хартри-Фока-Рутана итерационным методом (SCF-self consistent field - самосогласованное поле) и состоит в нахождении вида волновой функции . Приближения, используемые в квантовой химии:

Строение атома

Согласно представлениям квантовой механики, атомы не имеют определённых границ, однако вероятность найти электрон, связанный с данным ядром, на расстоянии r от ядра быстро падает с увеличением r. Поэтому атому можно приписать некоторый размер .

Радиальная функция распределения вероятности нахождения электрона в атоме водорода обладает максимум при α 0 , как показано на рис.1. Этот наиболее вероятный радиус для электрона совпадает с боровским радиусом . Более размытое облако плотности вероятности, полученные при квантовомеханическом рассмотрении, значительно отличается от боровской модели атома и согласуется с принципом неопределённости Гейзенберга .

Лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение его наружных электронов. Это так называемый орбитальный радиус атома. В зависимости от порядкового номера элемента (Z) проявляется чёткая периодичность в изменении значений орбитальных атомных радиусов . На рис.2 представлена зависимость орбитальных радиусов от порядкового номера элемента.

Размер электронной оболочки атома более чем в 10 тысяч раз превышает размер его атомного ядра.

Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов . Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом . Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов - изотопу этого элемента.

Образование химической связи и строение молекул и твёрдых тел

Единственной молекулярной системой, для которой уравнение Шрёдингера может быть точно решено, является молекулярный ион водорода H 2 + , где единственный электрон движется в поле двух ядер (протонов). Длина химической связи в молекулярном ионе водорода H 2 + составляет 1,06 Å. Энергия разрыва химической связи в молекулярном ионе водорода H 2 + составляет 61 ккал/моль. Энергия притяжения электрона к обоим ядрам в одноэлектронной химической связи компенсирует энергию отталкивания протонов, которая на расстоянии 1,06 Å составляет 314 ккал/моль.

Поскольку точное решение уравнения Шрёдингера для атомно-молекулярных систем, содержащих более одного электрона, невозможно, возникли приближённые теории химической связи.

В 1958 г. на симпозиуме по теоретической органической химии, посвящённой памяти А.Кекуле, Полинг представил теорию изогнутой химической связи . Двойная и тройная химическая связь рассматривалась, как комбинация двух или трёх изогнутых одинарных связей .

Правила равного удаления электронов друг от друга непосредственно следует из закона Кулона, согласно которому электроны стремятся находиться на максимально удалённом расстоянии друг от друга. Например, молекулы типа BeH 2 имеют строго линейную конфигурацию. Атомы III группы таблицы Менделеева образуют тригональные молекулы, типа BF 3 . Атомы IV группы образуют тетраэдрические молекулы, типа CH 4 . Молекулы, образованные атомами V и VI групп, имеют геометрию тригональной бипирамиды и октаэдра, соответственно .

Физические, в том числе спектральные свойства атомов, молекул и твёрдых тел

Атомные спектры

Квантование энергии атомов проявляется в их спектрах поглощения (абсорбиционные спектры) и испускания (эмиссионные спектры). Атомные спектры имеют линейчатый характер (рис.3).

Возникновение линий в спектре обусловлено тем, что при возбуждении атомов электроны, принимая соответствующую порцию энергии, переходят на более высокий энергетический уровень. Переход электронов в состояние с более низким энергетическим уровнем сопровождается выделением кванта энергии (рис.4).

Наиболее простой спектр у атома водорода, линии которого образуют спектральные серии; их положение описывается выражением ν = R (1/n 1 2 - 1/n 2 2), где ν - волновое число линии, R - постоянная Ридберга, n - целые числа, причём n 2 > n 1 .

Спектральные серии водорода Переход на квантовый уровень n 1 Область спектра
Серия Лаймана 1 ультрафиолетовый
Серия Бальмера 2 видимый свет
Серия Пашена 3 инфракрасный
Серия Брэккета 4 далёкий инфракрасный
Серия Пфунда 5 ---
Серия Хэмпфри 6 ---

Аналогичные серии наблюдаются в спектрах водородоподобных ионов (например, He + , Li 2+). С увеличением числа электронов атомные спектры усложняются и закономерности в расположении линий становятся менее выраженными.

Поляризуемость атомов и молекул

Внешнее электрическое поле напряжённостью E, наложенное на систему взаимодействующих ядер и электронов (атомов, ионов, молекул), деформирует её, вызывая появление наведённого дипольного момента μ = α e E, где коэффициент α e имеет размерность объёма и является количественной мерой электронной поляризуемости (его также называют электронной поляризуемостью). На рис.5 представлена деформационная поляризация (смещение электронной оболочки) атома водорода под действием электрического поля протона. При снятии внешнего электрического поля наведённый дипольный момент исчезает. В случае взаимодействия атома водорода и протона имеет место образование молекулярного иона водорода H 2 + с простейшей одноэлектронной химической связью.

H + H + → H 2 + + 61 ккал/моль

Относительно недавно были получены достоверные данные по электронным поляризуемостям большинства атомов в свободном состоянии. Наибольшее значение электронной поляризуемости наблюдается у атомов щелочных металлов, а минимальное - у атомов инертных газов .

В случае многоядерных систем внешнее электрическое поле приводит как к деформации электронных оболочек, так и изменению равновесных расстояний между ядрами (длины связи). В соответствии с этим поляризуемость молекулы составляется из двух слагаемых: α = α e + α a , где α e - электронная поляризуемость, α a - атомная поляризуемость .

Ионизация атомов и молекул

При высокой напряжённости внешнего электрического поля, наложенного на систему взаимодействующих ядер и электронов происходит её ионизация - отрыв электрона от атома или молекулы и образование положительно заряженного иона - катиона. Процесс образования ионов из атомов или молекул всегда эндотермический. Количество энергии, необходимое для отрыва электрона от возбуждаемых атомов или молекул, принято называть энергией ионизации . Для многоэлектронных атомов энергия ионизации l 1 , l 2 , l 3 … соответствует отрыву первого, второго, третьего и т. д. электронов. При этом всегда l 1 < l 2 < l 3 …, так как увеличение числа оторванных электронов приводит к возрастанию положительного заряда образующегося иона. Изменение энергии отрыва первого электрона в зависимости от порядкового номера элемента приведено на рис.6.

Кривая имеет явно выраженный периодический характер. Наименьшей энергией ионизации (3-5 эв) обладают атомы щелочных металлов, имеющих по одному валентному электрону, наибольшей - атомы инертных газов, обладающих замкнутой электронной оболочкой.

В связи с низкими значениями энергии ионизации щелочных металлов атомы их под влиянием различных воздействий сравнительно легко теряют свои внешние электроны. Такая потеря происходит под действием освещения чистой поверхности щелочного металла. На этом явлении, которое носит название фотоэлектрического эффекта, основано действие фотоэлементов, то есть приборов, непосредственно трансформирующих световую энергию в электрическую . Квантовая природа фотоэлектрического эффекта установлена Эйнштейном , которому присуждена в 1921 г. Нобелевская премия за труды по теоретической физике, особенно за открытие законов фотоэффекта.

Сродство к электрону

Электрон, обладая отрицательным элементарным зарядом q=1,602 10 −19 Кл, как и всякий точечный электрический заряд создаёт вокруг себя электрическое поле с напряжённостью E. E=q/R 2 , где R - расстояние точки поля до электрона. Атом водорода, попадая в электрическое поле электрона, подвергается деформационной поляризации. Величина наведённого дипольного момента μ, прямо пропорциональна напряжённости электрического поля μ = α e E = Lq.

Величина смещения центра электронной оболочки атома водорода L обратно пропорциональна квадрату расстояния атома водорода к приближающемуся электрону R (рис.7). Сближение атома водорода и электрона возможно до тех пор, пока центры областей плотностей вероятности нахождения электронов не станут равноудалёнными от ядра объединённой системы - отрицательно заряженного иона водорода (гидрид-иона H -).

Энергетический эффект процесса присоединения электрона к нейтральному атому Э принято называть энергией сродства к электрону . В процессе присоединения электрона к нейтральному атома образуется отрицательно заряженный ион (анион) Э - :

Э + e - → Э -

На рис.8 представлена зависимость энергии сродства к электрону атомов от порядкового номера элемента. Наибольшим средством к электрону обладают p-элементы VII группы (галогены).

Взаимодействие отдельных молекул, энергетические барьеры на пути трансформаций молекул

Межмолекулярное взаимодействие - это электромагнитное взаимодействие электронов и ядер одной молекулы с электронами и ядрами другой. Межмолекулярное взаимодействие зависит от расстояния R между молекулами и их взаимной ориентации и определяется потенциальной энергией. Энергия притяжения молекул может быть представлена в виде трёх составляющих: ориентационной Еор, индукционной Еинд, и дисперсионной Едисп.

Введение

Большинство открытий в области естественных наук связано с развитием представлений о строении и динамике окружающего нас мира. Важное место в этом процессе занимает квантовая теория материи. Квантовая химия является одним из частных аспектов этой теории. Эта фундаментальная дисциплина рассматривает приложение квантовомеханических законов к изучению химических явлений и процессов на атомно-молекулярном уровне.

Путь к познанию законов материального мира в атомно-молекулярной шкале был непрост и долог. Плоды его человечество получило не только в виде электронной, компьютерной, коммуникационной, космической и биомедицинской революций, приведших к качественно новой техносфере, окружающей человека, к расшифровке генома и клонированию живых существ, но и в виде ядерного, химического и бактериологического оружия. Какие же научные представления привели к столь радикальным переменам?

В 20-е годы нашего века описание материи основывалось на восходящей к Демокриту и Дальтону концепции атомов, каждый из которых состоит из отрицательно заряженных электронов и положительно заряженных ядер. Тому в подтверждение были получены хорошо понятные многочисленные экспериментальные данные, хотя законы, описывающие поведение электронов, были изучены слабо. Идея волнового характера микромира (де Бройль) сняла многие противоречия. Однако представления того времени не раскрыли причин образования молекул из атомов, специфики их поведения в основном состоянии и тем более в химических реакциях. Чтобы сделать это, потребовалась последовательная теория. Ею стала квантовая механика, обеспечившая методологию, способную описывать и предсказывать многие свойства веществ на атомном уровне. Со временем химики убедились в действенности этой методологии и это в корне изменило содержание многих химических исследований. Квантовая химия, рассматривая поведение электронов, объяснила строение химических соединений, природу химической связи, энергетику различных химических процессов, колебания, химические реакции и взаимодействия в сложных молекулярных ансамблях, включая биологические системы.

Курс квантовой химии в РХТУ, рассматривая атомы, молекулы и их ансамбли и кристаллы, опирается на постулаты квантовой механики, которые изучаются в курсах физики и теоретических основ химии. Для его изучения достаточно знакомства с математикой в стандартном вузовском объеме. Важнейшим в квантовой химии является понятие волновой функции - характеристики состояний химических систем, зависящей от координат частиц и являющейся решением уравнения Шредингера. Это уравнение волновые функции связывает с возможными значениями энергии состояний при заданном числе электронов и ядер и известном взаимном расположении последних. Зная волновые функции, можно определить распре-деление электронного заряда, рассчитать моменты молекулы, вычислить ее спекроскопические и резонансные характеристики, описать ее реакционную способность, рассчитать зонную структуру кристалла и т.д.

Для простых систем волновые функции рассчитывают численно, для систем более сложных и представляющих практический интерес для химиков это невозможно. Поэтому при расчетах приходится вводить различные приближения. Одним из основных таких приближений, используемом в большинстве квантовохимических расчетов, является приближение Борна-Оппенгеймера, основанное на идее раздельного рассмотрения волновых функций, описывающих состояния электронов и ядер. Более тяжелые ядра двигаются намного медленней электронов и при описании многих электронных процессов могут считаться неподвижными. В результате математическая задача определения электронных волновых функций сильно упрощается. Теория химической связи, например, построена именно в этом приближении.

Дальнейшие приближения касаются электронного движения. Отрицательно заряженные электроны отталкиваются в молекуле друг от друга. Это воздействует на их движение, которое, как говорят, является коррелированным. Именно это создает основную трудность в определении волновых функций для многэлектронных систем. Поэтому в большинстве методов квантовой химии исходят из приближения, что движение электронов некоррелировано и ищут волновые функции электронов, считая их независимыми. Поскольку, однако, все частицы в молекуле взаимодействуют, это учитывают, вводя для заданного электрона вместо мгновенного взаимодействия с другими электронами и ядрами, взаимодействие с полем, усредненным по положениям всех других частиц. Благодаря этому, проблема расчета волновых функций для сложных систем упрощается, поскольку задача сводится к определению одноэлектронных волновых функций каждой частицы в среднем поле остальных (молеку-лярных орбиталей). Один из наиболее мощных методов квантовой химии - метод Хартри-Фока- позволяет рассчитать именно такие функции.

Хотя приближение независимых частиц - довольно серьезное упрощение, к счастью, во многих случаях оно допустимо и позволяет, найдя волновые функции, понять химическое поведение молекулы. Учет корреляций в движении электронов возможен, хотя и сложен, при этом опять приходится привлекать различные приближениия. Чаще всего корреляция учитывается по теории возмущений, используя хартри-фоковскую волновую функцию как исходное приближение, или путем представления волновой функции в виде суперпозиции более простых волновых функций, описывающих возможные возбуждения в системе.

Часто для понимания сути химических процессов или трактовки экспериментальных данных достаточно использовать менее точные и весьма упрощенные подходы. Промежуточные величины, фигурирующие в схеме расчета, в этих методах рассматриваются как параметры, извлекаемые. как правило, из эксперимента. Такие методы называются полуэмпирическими; они различны для разных классов соединений и их использование требует отдельного изучения. Такие методы важны, потому что, несмотря на многие достижения, идеи квантовой химии в чистом виде (ab initio ) непосредственно применимы к ограниченному классу химических проблем: затраты на вычисление волновых функций быстро растут с размером системы. Более того, в важных химических процессах, протекающих в биологических системах, типа метаболизма в организме человека, участвуют функциональные фрагменты, составленные из многих тысяч атомов, которые в свою очередь, окружены меньшими молекулами. Потребность в изучении таких сложных "макромолекулярных" систем привела к развитию полуклассических моделей, которые объединяют описание атомов в терминах электронов и ядер с простой моделью, основанной на классических физических законах (типа закона Ньютона). В этой схеме атомы рассматриваются как неделимые частицы, а взаимодействие между ними описывается упрощенными математическими соотношениями, следующими, однако, из квантовой химии. Этот подход называется молекулярной механикой, а ее раздел, изучающий как химическая система изменяется при движении атомов в поле соседей, - молекулярной динамикой. Параметры в такой классической модели получают, выполняя квантовохимические вычисления намного меньших систем. Такое моделирование способно объяснить механизм многих химических явлений и процессов.

При рассмотрении процессов, в которых химические связи образуются и разрушаются, приходится комбинировать классический и квантовый подходы, рассматривая части системы, в которых происходят химические изменения, квантово, а их взаимодействия с окружением - классически. Чтобы сделать это на практике, необходимо глубокое понимание предела при-менимости каждого метода, опирающееся на квантовохимические знания. Такой подход, в частности, применяется при исследовании биологических систем и при изучении селективных, экстракционных и каталитических процессов, Так, способность катализаторов управлять реакцией обусловлена свойствами среды, окружающей "активный участок" реакции. Без учета влияния окружающей среды, которой, например, может быть, поверхность фермента в белках или полость в цеолитах, способность катализатора управлять ходом реакции понять невозможно. Методы моделирования, пригодные к рассмотрению этих сложных химических систем, помогают поиску новых химических агентов, включая лучшие катализаторы и более эффективные лекарства.

Какое еще научное и технологическое применение находит информация, получаемая в результате расчетов? Она необходима, например, для решения задач нелинейной оптики, в частности, фотоники - технологического аналога электроники, в котором вместо электронов для получения, хранения, передачи и обработки информации используются фотоны. Нелинейные оптические явления применяют для управления электронными свойствами сред, обеспечивающих изменение частоты (цвета), усиление и переключение излучения, используют в датчиках, основанных на изменении свойств материалов под действием давления, темпера-турных, электрических полей, и т.д. Оптимизация оптических нелинейностей материалов на молекулярном уровне требует детального понимания соотношения между электронной струк-турой и нелинейной поляризацией вещества. Квантовохимические методы обеспечивают это, позволяя предсказать свойства оптических материалов (поляризуемости, гиперполяризуемости) и оценить способность отклика среды на приложенное электромагнитное воздействие. Точность метода обеспечивает решение даже этой специфической задачи, требующей знания поведения волновых функций как основного, так и возбужденных состояний.

Квантовая химия в комбинации с физической и коллоидной химией и биохимией сыграла важную роль в появлении молекулярных компьютерных и материаловедческих технологий в наношкале - нанотехнологий. Среди задач этого направления, решаемых методами квантовой химии, -характеристика наноматериалов микроскопического и объемного характера с особыми конструктивными, электрическими и тепловыми свойствами, моделирование программируемых молекулярных систем, способных самоорганизовываться и создавать новые материальные объекты, проектирование молекулярных и биологических систем и изделий различного назначения, включая компоненты компьютера, такие как память атомной плотности, и материалы космической техники (нанодизайн). Все эти проблемы связаны с изучением электронной структуры и свойств молекул, молекулярных ансамблей и кластеров и кристаллов.

Даже этот краткий обзор показывает как на наших глазах изменяется содержание химическо-технологических задач и какую роль в этом играет квантовая химия.

к разделу "Лекции"

на основную страницу предметной комиссии по квантовой химии