Согласитесь, вопрос, вынесенный в заголовок, можно услышать разве что в фантастическом произведении. Но настолько ли это фантастично? Можно ли добраться до звезды Альфа Центавра. И почему многие фантасты облюбовали именно эту звезду? Давайте порассуждаем на тему межзвездных полетов.

Действительно, Альфа Центавра встречается во многих литературных и кинематографических произведениях. С этой звездой мы встречаемся в произведениях Айзека Азимова, Станислава Лема, Роберта Хайнлайна. Об обитаемых близ этой звезды мирах нам «известно» из таких фильмов как «Трансформеры» (Кибертрон – небольшая планета в системе Альфа Центавра), «Аватар» (Пандора также является планетой этой звезды), «Гостья из будущего». Эта звезда встречается и в компьютерных играх. Откуда же ей столько внимания? Почему многие фантасты именно к Альфа Центавра отправляют героев своих произведений? Может быть они знают что-то, что не известно нам?

Планета Кибертрон из фильма «Трансформеры»

Давайте посмотрим поближе на эту загадочную звезду. Альфа Центавра находится в созвездии Центавр и представляет собой не отдельную звезду, а звездную систему из трех звезд, расположенную на расстоянии «всего» чуть более чем в 4 световых годах от нашего Солнца. То есть свет от этой звездной системы добирается до нас 4 года (от Солнца до Земли свет доходит примерно за восемь минут). Это самая близкая к нам звездная система, наша соседка. В этом состоит первая причина, почему эти звезды созвездия Центавр так интересны нам, землянам.

Самая ближняя из трех звезд, Проксима Центавра (кстати, «proxima» означает «ближайший»), самая маленькая и тусклая из этих трех звезд (в семь раз меньше Солнца). Ее невооруженным глазом увидеть нельзя – яркость этой звезды в 150 раз меньше яркости Солнца. Интересной особенностью звезды является тот факт, что она периодически вспыхивает, увеличивая свою яркость. Такое нестабильное поведение вряд ли способствует зарождению жизни в пределах Проксима Центавра. Но тот факт, что это самая близкая звезда к Солнечной системе подогревает исследовательский интерес человечества.


Небольшая фантазия на тему «Если бы вместо Солнца была Альфа Центавра»

В отличие от Проксимы две другие звезды системы – Альфа Центавра А и Альфа Центавра В гораздо более яркие. Кстати, никогда не задумывались, почему часто в названии звезд фигурируют греческие буквы альфа, бета, гамма и т.д.? С помощью греческого алфавита звезды помечают по степени яркости: альфа – самая яркая звезда созвездия, бета – чуть менее яркая и т.д. Так вот, Альфа Центавра А и В самые яркие звезды созвездия Центавр. С Земли они кажутся одной звездой, т.к. расположены очень близко друг от друга (естественно, в масштабах космоса). Но если наблюдать вооруженным глазом (хотя бы с помощью хорошего бинокля), будет видно, что это две отдельные звезды. Сравнительная близость к нам этой звездной системы, яркость и близкое расположение звезд системы друг к другу делают Альфа Центавра одной из ярчайших звезд на небосклоне. Вот только увидеть ее жителям Северного полушария не удастся – это обитатель Южного полушария. В Южном полушарии Альфа Центавра входит в систему южных навигационных указателей, с помощью которых можно определять стороны света – ну как в Северном полушарии Полярная звезда (кстати, Полярная звезда еще называется Альфа Малой Медведицы, т.е. самая яркая звезда созвездия Малая Медведица).

Альфа Центавра на Южном небосклоне

А вот теперь самое интересное: Альфа Центавра А и В очень похожи на Солнце. Следовательно, астрофизики (такие серьезные дядечки, изучающие строение небесных тел) небезосновательно полагают, что вблизи этих звезд могут существовать планеты, подобные Земле. Более того, в 2012 году в системе Альфа Центавра была обнаружена планета. Правда, она расположена близко к Альфа Центавра В, и существование жизни в привычном нам понимании там маловероятно. Но обнаружение планет довольно непростая задача, т.к. планеты, в отличие от звезд, не имеют собственного излучения. Ученым порой требуется довольно много времени, чтобы обнаружить планету возле далекой звезды. Поэтому вполне вероятно, что в ближайшем времени мы услышим об открытии новых планет в системе Альфа Центавра. И это вторая причина, почему человечество грезит отправкой первой межзвездной миссии именно к Альфа Центавра.

Относительные размеры Солнца и звезд системы Альфа Центавра

Надеюсь, эти два больших аргумента – близость к Солнечной системе и схожесть с Солнцем — и вам помогли вступить в ряды тех людей, которые считают Альфа Центавра наилучшим кандидатом для первого межзвездного перелета. В общем, хоть завтра запрыгивай в космический корабль – и в путь! Но вот тут нас подстерегает непреодолимое на сегодняшний день препятствие – топливо. Да-да, именно ракетное топливо. Слышали о космическом аппарате «Вояджер-1»? На сегодняшний день это самый быстрый космический аппарат. Он был запущен в космос 5 сентября 1977 года. С тех пор (а это более 37 лет) аппарат преодолел «всего» 19,5 миллиардов километров. Если считать в световых годах, то это чуть больше 0,002 световых года. Сейчас скорость «Вояджера-1» составляет 17 км/с. Аппарату понадобится более 70 тысяч лет, чтобы добраться до Альфа Центавра. Существующее химическое топливо слишком низкоэффективно, а его требуемый запас должен быть слишком большим, чтобы его можно было использовать для межзвездных путешествий. Поэтому с уверенностью можно говорить, что на сегодняшний день межзвездные путешествия возможны только в фантастике.

И тем не менее человечество не оставляет мысли о путешествиях к далеким звездам. И уже не фантастами, а учеными разрабатываются планы освоения далекого космоса. Наиболее известный из таких проектов – проект «Дедал».

Так мог бы выглядеть космический корабль по проекту «Дедал»

Кстати говоря, этот проект не такая уж новинка – ему более 30 лет. Тем не менее, он до сих пор остается наиболее реальным проектом межзвездного космического корабля, использующего существующие технологии. Космический корабль «Дедал» по проекту должен быть оснащен импульсным термоядерным двигателем, способным развивать скорость до 13% от скорости света. Предполагалось, что такой космический аппарат достигнет звезды Барнарда за 49 лет. Эта звезда находится на расстоянии 5,91 световых лет – дальше, чем Проксима или Альфа Центавра, но на момент подготовки проекта предполагалось (что в последствии не подтвердилось), что эта звезда имеет планеты.

Существуют и более современные проекты. Например, создание звездолета с использованием плазменных, ионных двигателей и даже солнечного паруса. Но наиболее эффективным считается топливо, основанное на антивеществе. Антивещество состоит из тех же элементарных частиц, что и обычное вещество, но только с противоположным зарядом. При взаимодействии частиц и античастиц происходит их взаимное уничтожение с выделением колоссального количества энергии. Но проблемой является тот факт, что в природе антивещество практически не встречается. Ученым удалось искусственно получить ничтожное количество антивещества. Стоимость же его просто огромна – производство одного грамма антиводорода может обойтись в более 100 миллиардов долларов США! К томе же антивещество крайне нестабильно, из-за чего его чрезвычайно сложно хранить. Несмотря на это ученые продолжают работать над совершенствованием технологий синтеза антиматерии, что позволяет рассматривать ее в качестве альтернативного топлива для межзвездных экспедиций. А пока антиматерию неплохо в своих произведениях эксплуатируют фантасты. Кстати говоря, Джеймс Кэмерон в фильме «Аватар» для перелета к звездной системе Альфа Центавра использовал космический корабль как раз на антивеществе. Действительно, антивещество могло бы быть идеальным топливом для кораблей будущего. Оно позволило бы сконструировать достаточно компактный корабль, способный разогнаться до десятых долей от скорости света и достичь Альфа Центавра менее чем за 50 лет. Правда, такие высокие скорости ставят перед учеными и инженерами новые технические задачи. Например, на скорости 10% от скорости света мельчайшая пылинка, встретившаяся на пути корабля, способна серьезно его повредить. Следовательно, при конструировании космических кораблей будущего необходимо создание и серьезных систем защиты, экранов.

Космический корабль из фильма «Аватар»

Несмотря на это, наука не стоит на месте. Уже сейчас на вопрос, поставленный в начале статьи, — возможно ли отправиться в межзвездные путешествия – можно ответить утвердительно. Да, не сегодня и даже не завтра. Но человек всегда стремился заглянуть за горизонт. Для исследователей прошлого и изучение неизведанных земель казалось трудновыполнимым. Да что там исследования многовековой давности! Еще недавно полеты в космическое пространство были фантастикой, а сегодня в космос летают туристы. Вполне возможно, что уже современные люди станут свидетелями великих космических открытий!

МОСКВА, 17 окт - РИА Новости. Астрономы из Европейской южной обсерватории открыли планету земной массы в ближайшей к Земле звездной системе - у звезды Альфа Центавра B, говорится в статье, которая будет опубликована в журнале Nature .

Звездная система Альфа созвездия Центавра является ярчайшей звездой южного неба и ближайшей к Солнечной системе.

Это тройная звезда, состоящая из двух звезд, похожих на Солнце - Альфа Центавра A и Альфа Центавра B - и третьей, удаленной от них Проксимы Центавра. Проксима - тусклый красный карлик - является ближайшей к Солнцу звездой. Она находится на расстоянии около 4,24 световых года от Земли, примерно на 0,2 световых года ближе, чем звезды A и B. Однако увидеть эту тусклую звезду невооруженным глазом нельзя.

С 19 века астрономы строили предположения о возможности существования в этой системе планет, которые могли бы быть ближайшим к Солнечной системе прибежищем жизни. Но точность астрономических методов до сих пор не позволяла судить о том, есть ли планеты у этих ближайших к Земле звезд. Теперь такая планета найдена.

"Наблюдения, которые мы проводили более четырех лет с помощью инструмента HARPS, позволили обнаружить слабый сигнал, который свидетельствует о существовании планеты, обращающейся вокруг звезды Альфа Центавра B с периодом 3,2 дня", - говорит Ксавье Дюмуск (Xavier Dumusque), ведущий автор исследования, слова которого приводит пресс-служба Европейской южной обсерватории.

Европейские астрономы использовали для поиска планеты метод лучевых скоростей - метод, основанный на измерении крайне малых "качаний" звезды, возникающих под действием гравитации планеты. Спектрограф HARPS, установленный на телескопе с диаметром зеркала 3,6 метра обсерватории Ла-Силья в Чили, фиксировал доплеровский сдвиг спектра, возникающий от этой "прибавки". Этот эффект чрезвычайно слаб - планета заставляет звезду Альфа Центавра B двигаться вперед и назад со скоростью около 51 сантиметра в секунду, чтобы измерить ее, требуется высочайшая точность.

Звезда Альфа Центавра B похожа на Солнце, ее масса составляет 0,9 массы Солнца, а светимость - примерно половину солнечной. Планета, открытая европейскими астрономами, делает один оборот вокруг нее за 3,236 дня, а радиус ее орбиты составляет лишь 0,04 астрономической единицы (5,98 миллиона километров), что примерно в десять раз меньше радиуса орбиты Меркурия (0,46 астрономической единицы).

Масса планеты составляет, по меньшей мере, 1,13 массы Земли. Метод лучевых скоростей позволяет оценить лишь нижнюю границу массы планеты, но опыт показывает, что она чаще всего близка к реальной.

Второй компонент двойной системы, звезда Альфа Центавра A, находится на расстоянии в сотни раз дальше - примерно на дистанции, разделяющей Солнце и Сатурн - но в небе этой планеты она должна сиять очень ярко.

"Это первая планета с массой, близкой к массе Земли, обнаруженная у звезды, похожей на Солнце. Она обращается очень близко к своей звезде и должна быть слишком горячей, чтобы на ней возникла жизнь, но возможно, это лишь одна планета из нескольких, которые могут существовать в этой системе", - говорит соавтор исследования Стефан Одри (Stephane Udry).

Альфа Центавра - одна из ярчайших звезд на небе южного полушария Земли. Это ближайшая к Солнцу звездная система - расстояние до нее составляет всего лишь 4,3 световых года. Система состоит из трех компонентов - близкой пары звезд альфа Центавра А и B, вращающихся вокруг общего центра масс с периодом около 80 лет, и тусклого красного карлика Про́ксима Центавра, который расположен гораздо дальше. Первые два компонента по своим характеристикам похожи на Солнце, поэтому не удивительно, что уже с XIX века ученые задавались вопросом о существовании вокруг этих звезд планет, возможно, ближайших очагах жизни вне Солнечной системы. Поиски, однако, до сих пор ни к чему не приводили, даже несмотря на постоянный прогресс в точности измерений.

Наконец, 16 октября 2012 года на специально созванной пресс-конференции европейские астрономы заявили об открытии планеты с массой, близкой к массе Земли, которая вращается вокруг ме́ньшей из двух солнцеподобных звезд. Наблюдения велись на спектрографе HARPS, который установлен на 3,6-метровом телескопе ESO в обсерватории Ла Силья, Чили. В настоящее время HARPS - самый точный инструмент для поиска экзопланет методом измерения лучевых скоростей.

Планета была зарегистрирована по измерениям мельчайших колебаний в движении α Центавра B, которые обусловлены гравитационным притяжением вращающейся по орбите планеты. Эффект является поистине микроскопическим - звезда периодически смещается то в одну, то в другую сторону со скоростью, не превышающей 51 сантиметр в секунду (1,8 км/час) , что близко к скорости ползущего на четвереньках младенца. Это высочайшая точность измерения, когда-либо достигнутая с этой методикой!

Ведущий автор исследования Ксавье Дюмуск (Xavier Dumusque) из Женевской обсерватории в Швейцарии и Астрофизического Центра Университета Порту в Португалии сказал: «Наши наблюдения с инструментом HARPS, продолжавшиеся более четырех лет, выявили очень слабый, но реальный сигнал от планеты, вращающейся вокруг альфы Центавра B с периодом 3,2 дня. Это из ряда вон выходящее открытие, сделанное на пределе точности наших методик!» Таким образом, на сегодняшний день планета альфа Центавра Bb еще и самая маломассивная из всех экзопланет, обнаруженных у солнцеподобных звезд. (В соответствии с номенклатурой открытая планета получила наименование Bb в системе альфа Центавра. В данном случае заглавная B - обозначение материнской звезды, компонента системы альфа Центавра, а b - обозначение самой планеты.)

Взгляд художника на планету вокруг звезды α Центавра В, которая входит в состав ближайшей к нам звездной системы. Альфа Центавра В - самый яркий объект на рисунке. α Центавра А находится внизу слева, а наше Солнце видно в правом верхнем углу. © ESO/L. Calçada/N. Risinger

Альфа Центавра B очень похожа на Солнце; она лишь немного уступает ему в массе и размерах и излучает ровно в два раза меньше света, чем наша звезда. Новооткрытая планета, масса которой лишь немногим превышает массу Земли, вращается по орбите на расстоянии около шести миллионов километров от материнской звезды, то есть почти в 10 раз ближе к ней, чем Меркурий к Солнцу. (Здесь надо добавить, что методом измерения лучевых скоростей астрономы могут оценить только минимальную массу планеты, так как оценка массы зависит также от неизвестного наклона плоскости орбиты планеты к лучу зрения. Однако со статистической точки зрения эта минимальная масса часто оказывается близка к реальной массе планеты.)

Первая экзопланета у солнцеподобной звезды была найдена также Женевской группой исследователей еще в 1995 г. С тех пор было открыто и подтверждено более 800 планет за пределами Солнечной системы, а еще около 2300 кандидатов ждут своего подтверждения. Большинство из подтвержденных на сегодняшний день планет гораздо больше Земли, многие имеют размеры и массу, сравнимые с таковыми у Юпитера. Это объясняется недостаточной чувствительностью существующих инструментов, которые пока с трудом «видят» планеты с массой, сравнимой с массой Земли. Сегодня труднейшей и интереснейшей задачей для астрономов является обнаружение и исследование земноподобных планет, орбиты которых лежат в пределах «зоны обитания» вокруг их материнских звезд (то есть на таком расстоянии от своей звезды, что на их поверхности может существовать вода в жидком виде). Теперь первый шаг в этом направлении сделан.

Звезда Альфа Центавра. На этой фотографии компоненты альфа Центавра А и В сливаются в одно ослепительное яркое пятно света (снимок сделан в искуственных цветах). Тройная звезда Альфа Центавра - ближайшая звезда к Солнечной системе. Фото: ESO/Digitized Sky Survey 2/Davide De Martin

«Это первая планета с массой, близкой к массе Земли, обнаруженная у солнцеподобной звезды. Ее орбита очень близка к ее материнской звезде, и на ее поверхности, должно быть, слишком жарко для существования жизни в той форме, в какой мы ее знаем, - это слова Стефана Удри (Stéphane Udry) из Женевской Обсерватории, соавтора исследования и члена группы, - но вполне возможно, что это только одна из нескольких планет системы. И результаты наших исследований с помощью HARPS, и новые находки телескопа Кеплера ясно показывают, что в таких системах находится огромное количество планет малой массы».

«Этот результат представляет собой огромный шаг к обнаружению двойника Земли в непосредственной окрестности Солнца. Мы живем в замечательное время!» - заключил Ксавье Дюмуск.

Научная статья с результатами исследований появилась в онлайн-выпуске журнала Nature («Природа») 17 октября 2012 г.

Характеристики системы α Центавра B

Ниже светимость, масса и радиус звезды выражены в солнечных.

Звезда α Центавра B

Созвездие: Центавр
Видимая звездная величина: 1,33
Спектральный класс: К1V
Параллакс: 0,74723″ ± 0,00117″
Расстояние: 1,34 пк
Координаты α (2000): 14h 39min 35.1s
Координаты δ (2000): -60° 50′ 14″
Собственное движение α: 3,614″/год
Собственное движение δ: 0,803″/год
Лучевая скорость: -21,6 км/с
Возраст: 6 ± 1 миллиардов лет
Эффективная температура: 5214 ± 33 К
Светимость: 0,500
Масса: 0,934 ± 0,006
Радиус: 0,865

Планета α Центавра Bb

Минимальная масса: 1,13 ± 0,09 масс Земли
Большая полуось орбиты: 0,04 а. е.
Период обращения: 3,2357 ± 0,0008 дней

Состоится ли обещанный астрофизиками космический фейерверк, вызванный поглощением газового облака сверхмассивной черной дырой в центре нашей Галактики? Откуда взялись эллиптические галактики и как им удалось так быстро состариться? Как могла возникнуть тройная звездная система, состоящая из двух белых карликов и одной нейтронной звезды? Наконец, как узнать, есть ли в системе Альфа Центавра планеты, похожие на Землю? Об этом и многом другом - в свежем астрообзоре «Ленты.ру».

Пусть лучше газ

В последний год астрофизики внимательно наблюдают за объектом, получившим обозначение G2 (в одном из предыдущих астрообзоров «Лента.ру» о нем ). G2 - это небольшое по астрономическим меркам газовое облако недалеко (всего в полутора сотнях астрономических единиц) от сверхмассивной черной дыры в центре нашей Галактики. В ближайшее время облако будет разорвано приливными силами дыры, часть вещества выпадет на горизонт событий, а у астрономов появится шанс впервые пронаблюдать процесс аккреции (то есть питания) черной дыры.

Впрочем, все это верно, только если G2 - просто сгусток газа. Существует гипотеза, что это маломассивная звезда, окруженная газовой оболочкой. И если она верна, то шансы увидеть космический фейерверк серьезно уменьшаются: звезда находится на такой орбите, что, скорее всего, уже неоднократно проходила рядом с дырой, и существенным образом это на нее не повлияло. А значит, ожидать выпадения вещества на дыру также не стоит.


В новой работе четверо американских астрофизиков представили очередную порцию аргументов в пользу того, что фейерверк все-таки состоится.

По их мнению, G2 есть не что иное, как уплотнение в газовом «хвосте», которое осталось от произошедшего когда-то сближения массивной звезды с черной дырой. Действительно, если звезда имеет достаточно широкую оболочку, то при сближении часть ее будет сорвана и вдоль траектории возникнет вытянутый газовый след. Из-за динамических эффектов этот след будет неоднородным, и отдельные его сгустки наблюдатель увидит как яркие квазиточечные объекты. Американцы полагают, что именно так и появилась G2, а в качестве подтверждения они приводят результаты компьютерного моделирования срыва оболочек звезды.

Кроме этого, авторы работы попытались найти прародителя G2 и установили, что на эту роль подходит звезда S1-34. Около двухсот лет назад эта звезда-гигант с оболочкой диаметром около одной астрономической единицы сближалась с черной дырой нужным для рождения облака образом. Если дальнейшие наблюдения других астрономов подтвердят выводы американцев о S1-34, это станет весомым аргументом в пользу газовой природы G2.


Впрочем, не исключено, что обещанный галактический фейерверк произойдет еще до всех этих наблюдений - и дополнительные подтверждения не понадобятся.

Тихое звено эволюции

Астрономам известно, что спустя три миллиарда лет после Большого взрыва (то есть на красных смещениях z ~ 2) массивные галактики во Вселенной были уже довольно старыми - процесс рождения новых звезд в них практически прекратился. Впоследствии, сливаясь с соседями, эти скопления породили эллиптические галактики. Их - не имеющих структуры и почти лишенных газа - мы наблюдаем в относительной близости от нашей Галактики или, как говорят астрономы, «в нашу эпоху».

Но как образовались сами тихие (то есть без активного звездообразования) галактики? Как за столь небольшое время, прошедшее с момента рождения Вселенной, могло образоваться так много звезд? Убедительных ответов на эти вопросы до последнего времени не было. Авторы новой работы говорят, что теперь они есть.

Согласно логике исследователей, свойства тихих массивных галактик свидетельствуют о том, что мощную вспышку звездообразования (самую мощную во Вселенной) они должны были пережить за 1-2 миллиарда лет до той эпохи, в которой мы их наблюдаем. Значит, чтобы найти их прародителей, нужно искать галактики на 1-2 миллиарда лет младше (то есть расположенные на красных смещениях z ~ 3-6), отличающиеся при этом мощным процессом звездообразования.

Искать такие галактики непросто. Во-первых, они находятся чрезвычайно далеко от нас, поэтому их видимая яркость очень мала. Во-вторых, большой темп звездообразования в таких галактиках означает наличие там большого количества газа и пыли (строительного материала для звезд), которые будут поглощать свет новорожденных звезд, снижая и без того маленькую видимую яркость.

Впрочем, выход есть. Свет звезд разогревает пыль, поэтому галактики должны светиться в далеком инфракрасном (в миллиметровом и субмиллиметровом) диапазоне длин волн. Сейчас у ученых есть приборы для работы в этом диапазоне. В своем исследовании они использовали данные, полученные на двух из них - интерферометре на плато де Бур во французских Альпах и «Субмиллиметровом массиве» на Гавайских островах.

Объектом изучения выступали галактики из класса «субмиллиметровых» (Submillimeter galaxies, SMG) - по названию диапазона, в котором они видны лучше всего. Ученым удалось найти полтора десятка звездных систем возрастом 1-2 миллиарда лет, подходящих на роль прародителей тихих «гигантов».

Материалы по теме

Во-первых, обнаруженные SMG видны именно в ту эпоху, когда должны были существовать галактики-прародители. Во-вторых, пространственное распределение прародителей соответствует тому, которое нужно для последующего формирования эллиптических потомков. В-третьих, ученые показали, что найденные ими SMG имеют подходящие (теоретически) массы, размеры, плотности звездного населения и скорости вращения. Наконец, в-четвертых, длительность эпохи интенсивного звездообразования для этих галактик (несколько десятков миллионов лет) хорошо согласуется с существующими моделями развития скоплений.

Все эти выводы - результат сложного анализа большого массива наблюдательных данных (хотя выборка объектов была и не очень велика). В итоге, говорят авторы, получено наблюдательное подтверждение тому, что субмиллиметровые галактики являются прародительницами более старых массивных тихих галактик.

Ответ на логичный вопрос - как же образовались сами SMG? - был известен заранее. Эти галактики образовались в ходе слияний (коих в ранней Вселенной было много), менее массивных, богатых газом галактик. И именно последнее обстоятельство (большее количество газа) сыграло затем решающую роль в мощной вспышке звездообразования и, как дополнение, обильном выпадении вещества на центральную сверхмассивную черную дыру таких галактик.

Система-тройка

В начале текущего года международная группа ученых из четырех стран (в том числе из России) в журнале Nature об открытии и двухлетнем исследовании уникальной тройной звездной системы, состоящей из двух белых карликов и нейтронной звезды.

Нейтронная звезда в этой системе видна как миллисекундный радиопульсар (с обозначением PSR J0337+1715), являющийся, по сути, очень точными часами и позволяющий, в свою очередь, с высокой точностью изучать движение тел тройной системы. Само по себе это предоставляет широкие возможности для исследования динамической эволюции тройных систем (напомним, что задача о движении трех тел , связанных гравитационными силами, не имеет простого аналитического решения), а кроме того, позволяет детально проверять разные теории гравитации - непосредственно исследовать, как именно очень массивные тела притягиваются друг к другу.

В ближайшие годы ученые будут накапливать информацию об этой системе, и наверняка мы еще не раз о ней услышим. Однако интерес астрофизиков к ней не исчерпывается одним лишь характером движений составляющих ее звезд. Не менее интригует и вопрос о том, как такая система в принципе могла образоваться и сохраниться до наших дней.

Изображение: nrao.edu

Мы понимаем, что и белые карлики (БК) и нейтронная звезда (НЗ) в прошлом были обычными звездами: первые полегче, вторая помассивнее. Процесс взаимодействия звезд, находящихся на близком расстоянии, довольно сложен. Например, возможно перетекание массы с одной звезды на другую, что сопровождается изменениями динамических свойств уже всей системы в целом. В общем, разгадать ход эволюции системы непросто. Однако уже сейчас это попытались сделать двое астрофизиков из Германии и Нидерландов, в тот же день, что и первооткрыватели PSR J0337+1715 (по-видимому, обе группы работали осенью 2013 года параллельно).

По предлагаемому сценарию, система J0337+1715 начала свою жизнь как тесная пара звезд с массами около 10 и 1 массы Солнца, вокруг которой обращалась еще одна звезда с массой около одной солнечной. Спустя 20 миллионов лет (а полный возраст этой системы составляет около 10 миллиардов лет) оболочка самой массивной звезды «распухла» настолько, что та поглотила обеих соседок. В результате возникла экзотическая гигантская «звезда» (внутри которой могла бы поместиться вся земная орбита) содержащая не одно, а три ядра! Такой объект, правда, просуществовал недолго (то есть маловероятно обнаружить на небе что-то подобное), и всего через пару миллионов лет массивная звезда взорвалась как сверхновая, оставив после себя нейтронную звезду, видимую как радиопульсар.

Материалы по теме

Однако взрыв сверхновой не разрушил тройную систему - в частности, потому, что орбиты всех трех ее компонент к тому времени были круговыми и находились примерно в одной плоскости (это делает систему устойчивее).

Дальнейшая эволюция системы протекала гораздо медленнее, и главным в ней, пожалуй, был тот факт, что за миллиарды лет система дважды пережила процесс перетекания массы - с каждой маломассивной звезды на нейтронную. Нейтронная звезда своей сильной гравитацией как бы «ободрала» расширяющиеся оболочки соседок. Вещество, падая на НЗ, дополнительно раскручивало ее, что и привело к образованию миллисекундного пульсара - то есть НЗ, вращающейся вокруг своей оси с периодом лишь 2,73 миллисекунды. Со временем оболочки маломассивных звезд были сброшены полностью, их ядра обнажились и стали белыми карликами.

Картина, описанная авторами, при некоторой своей сложности выглядит весьма разумно и показывает, что современная теория звездной эволюции может справляться даже с такими нетривиальными случаями. Но это не значит, что к ней нет вопросов. Например, две эпохи перетекания вещества на НЗ должны были существенно увеличить ее массу (и мы знаем, что в двойных системах так и происходит). Однако масса НЗ в данном случае измерена очень точно и составляет около 1,4 солнечной, что является типичным значением для массы одиночных звезд и меньше такового для НЗ, переживших стадию аккреции вещества. Ответ на этот вопрос - дело дальнейшего исследования.

Звезды благоприятствуют

Ближайшая к Солнцу звезда (из известных нам) - это Проксима из созвездия Центавра. Собственно, ее название как раз и переводится с латинского как «ближайшая». Проксима - красный карлик, излучающий мало света и невидимый невооруженным глазом. Вместе со звездами Альфа Центавра A и B (a Cen A,B) она составляет широкую тройную звездную систему. Расстояние до Проксимы немногим более четырех световых лет, или 270 тысяч астрономических единиц (1 астрономическая единица равна среднему расстоянию от Земли до Солнца), а до Cen A и Cen B еще на 10-15 тысяч астрономических единиц больше.

Звездная система a Cen интересна не только потому, что ее легко изучать (ведь она расположена сравнительно близко), но и потому, что она, скорее всего, будет первой системой, которой достигнут земные космические аппараты. Поэтому, разумеется, было бы интересно обнаружить в ней хотя бы какую-нибудь планету. Желательно, земного типа.

В 2012 году у звезды a Cen B (кстати, более похожей на Солнце, чем Проксима) ученые уже обнаружили небольшую планету, но расстояние от ее орбиты до поверхности звезды - всего 0,04 астрономической единицы (в 10 раз меньше расстояния от Меркурия до Солнца), то есть очень мало для того, чтобы планета представляла какой-то интерес.

Система Альфа Центавра

Проксима Центавра находится на расстоянии 4,22 световых года от Солнца. Это самая близкая к нам из всех известных сегодня звезд . Ее можно рассмотреть только в телескоп как объект 11-й звездной величины в южном созвездии Центавра. Эта маленькая красная звездочка, член тройной звездной системы Альфа Центавра (см. изображение слева), была открыта только в 1915 г. шотландским астрономом Робертом Иннесом (1861 - 1933). Самая же яркая звезда в системе - Альфа Центавра А (4,35 светового года от Солнца), называемая Ригель (нога) Центавра - ярчайшая звезда созвездия. Она очень похожа на наше Солнце, но находится дальше Проксимы. Альфа Центавра А была известна с древнейших времен, являясь четвертой по яркости звездой на ночном небе. Яркие звезды Альфа Центавра А и В составляют тесную двойную систему. Расстояние между ними - 23 астрономические единицы, это немного больше расстояния от Солнца до Урана. А вот Проксима отстоит от этой пары на расстоянии 13 000 а.е. (или 0,2056 светового года, что в 400 раз больше, чем расстояние от Солнца до Нептуна). Все они обращаются вокруг общего центра масс, но период обращения Проксимы Центавра исчисляется миллионами лет, поэтому она еще долго останется для нас "ближайшей" (через 9000 лет самой близкой к Солнцу звездой станет быстро движущаяся в нашу сторону звезда Барнарда).


Проксима Центавра не только самая близкая к нам, но и самая маленькая из этой троицы. Ее масса столь невелика, что ее едва хватает, чтобы поддерживать в глубинах процесс синтеза гелия из водорода и тускло светиться. Она приблизительно в семь раз легче Солнца, а температура ее поверхности составляет "всего лишь" 3000 градусов, что вполовину меньше, чем у нашей родной звезды. Яркость в 150 раз меньше яркости Солнца. Звезды со столь небольшой массой - очень интересные объекты. Физические условия в их недрах имеют много общего с теми, что протекают внутри гигантских планет, подобных Юпитеру. Кроме того, вещество таких звезд должно находиться в довольно экзотичном состоянии. Да к тому же существует предположение, что планеты возле подобных звезд могут даже чаще служить колыбелью жизни, чем возле звезд солнечного типа. Однако до сих пор было невозможно определить истинные размеры этих малых звезд из-за их слабой светимости и отсутствия достаточно чувствительной аппаратуры.

Проблема была решена с помощью VLT-интерферометра - VLTI, (VLT - Очень Большой Телескоп). Высочайшая точность измерений была достигнута с использованием двух 8,2-метровых телескопов обсерватории Паранал (ЕSА), удаленных один от другого на 102,4 м. Международная команда астрономов из Женевской обсерватории (Швейцария), проанализировав данные с помощью нового программного обеспечения, впервые получила точный размер маленькой Проксимы, угловой диаметр которой оказался равен 1,02±0.08 угловой миллисекунды, что соответствует размерам астронавта на поверхности Луны при наблюдениях с Земли (или головке булавки на поверхности Земли, наблюдаемой с Международной космической станции). Человеческий глаз может различать объекты, разделенные только 50 и более угловыми секундами. Были измерены также три другие карликовые звезды, и результаты измерений находятся в соответствии с общепринятой звездной теорией, показывая, что наши представления о структуре и составе таких звезд близки к истине. Вскоре предполагается использовать VLTI для изучения совсем крошечных звездных объектов вроде "коричневых карликов". Более того, астрономы надеются, что можно будет непосредственно наблюдать экзопланеты в других звездных системах (до сих пор все подобные объекты обнаруживались только с помощью косвенных методов).

Проксима Центавра находится на границе между реальными звездами, коричневыми карликами и планетами. Масса и диаметр Проксимы Центавра составляют около 1/7 массы и диаметра Солнца. Эта звезда в 150 раз массивнее Юпитера, но только в 1,5 раза крупнее его. Если бы ее масса была еще в два раза меньше, она никогда не смогла бы стать звездой, водород в ее недрах просто не смог бы загореться. Тогда это был бы "коричневый карлик", а не звезда.

Для звезды, подобной Солнцу, вещество которого ведет себя как идеальный газ, звездный размер пропорционален массе. Однако для таких звезд, как Проксима Центавра, становятся чрезвычайно важными квантовые эффекты, а их звездное вещество "вырождается", оно само вынуждено сопротивляться сжатию, поскольку ядерные реакции сделать это уже не в силах. У объектов с половиной массы Проксимы Центавра или легче вещество является полностью выродившимся, и их размер не зависит от массы.



Примечанив . Все текстовые пояснения к приведенным в статье иллюстрациям даются во всплывающей подсказке при наведении курсора на изображение (для версий браузера IE4 и выше).


Авторство, источник и публикация: 1. Подготовлено проектом "Астрогалактика" по материалам журнала «Вселенная, Пространство, Время» № 4, 2005 2. Источник информации: ESA Press Release Space/light Now 3. Публикация проекта 30.04.2005