Определение . Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.

Приведем без доказательства известные в школьном курсе стереометрии теоремы, необходимые для решения последующих метрических задач.

1. Признак перпендикулярности прямой и плоскости: если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

2. Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.

3. Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.

Для построения прямой t " Е, перпендикулярной плоскости Σ, необходимо, на основании признака перпендикулярности, провести в плоскости две пересекающиеся прямые h и f, а затем построить прямую t по условиям: t ^ h, t ^ f (рис. 7.3). В общем случае прямые t и h, t и f – пары скрещивающихся прямых.

Задача. Даны плоскость Σ(ΔАВС) и точка Е.

Построить прямую t по условиям: t " E, t ^ Σ (рис. 7.4).

Решение задачи может быть следующим:

1) строятся линии уровня h и f в плоскости Σ, где h 2 // х, f 1 // x;

2) строятся проекции t 1 и t 2 искомой прямой t, где t 2 " Е 2 , t 2 ^ f 2 ; t 1 " E 1 , t 1 ^ h 1 . В итоге t 1 , t 2 решение задачи. Прямая t скрещивается с f и h.

Выбор линий уровня h и f в качестве пересекающихся прямых в плоскости Σ продиктован приведенными выше условиями теоремы о проецировании прямого угла и простотой построений на КЧ. Если точка Е находится в плоскости Σ, то последовательность построений остается прежней.

Задача. Даны прямая t и точка Е. Построить плоскость, проходящую через точку Е и перпендикулярную прямой t (рис. 7.5).

Решение задачи основывается на построении двух линий уровня h(h 1 ,h 2) и f(f 1 ,f 2), проходящих через точку Е: h 2 " E 2 , h 2 // х, h 1 " E 1 , h 1 ^ t 1 ; f 1 " E 1 , f 1 // х, f 2 " E 2 , f 2 ^ t 2 . Плоскость (h , f) – решение задачи.


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является

Видеоурок 2: Теорема о трех перпендикулярах. Теория

Видеоурок 3: Теорема о трех перпендикулярах. Задача

Лекция: Перпендикулярность прямой и плоскости, признаки и свойства; перпендикуляр и наклонная; теорема о трёх перпендикулярах

Перпендикулярность прямой и плоскости

Давайте вспомним, что такое вообще перпендикулярность прямых. Перпендикулярны те прямые, которые пересекаются под углом, равным 90 градусов. При этом угол между ними может быть, как в случае пересечения в некоторой точке, так и в случае скрещивания. Если некоторые прямые скрещиваются под прямым углом, то их тоже можно назвать перпендикулярными прямыми в том случае, если благодаря параллельному переносу прямая переносится в точку на второй прямой.


Определение: Если же прямая перпендикулярная любой прямой, которая принадлежит плоскости, то её можно считать перпендикулярной к этой плоскости.


Признак: Если на некоторой плоскости имеются две перпендикулярные прямые и некоторая третья прямая перпендикулярна каждой из них, то эта третья прямая перпендикулярна плоскости.



Свойства:

  • Если некоторые прямые перпендикулярны одной плоскости, то они взаимно параллельны друг другу.

Наклонная


Если некоторая прямая соединяет произвольную точку, которая не лежит на плоскости с любой точкой плоскости, то такая прямая будет называется наклонной .

Обратите внимание, наклонная она только в том случае, если угол между ней и плоскостью не 90 градусов.

На рисунке АВ – это наклонная к плоскости α. При этом точка В называется основанием наклонной.


Если же провести отрезок из точки А к плоскости, который будет составлять угол 90 градусов с плоскостью, то этот отрезок будет называться перпендикуляром. Перпендикуляром еще называют наименьшее расстояние до плоскости.

АС – перпендикуляр, проведенный из точки А к плоскости α. При этом точка С называется основанием перпендикуляра.


Если же на данном чертеже провести отрезок, который будет соединять основание перпендикуляра (С) с основанием наклонной (В), то полученный отрезок будет называться проекцией .


В результате несложных построений мы получили прямоугольный треугольник. В данном треугольнике угол АВС называется углом между наклонной и проекцией.


Теорема о трёх перпендикулярах